- 注册时间
- 2014-1-2
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 3482
- 在线时间
- 小时
|
发表于 2016-4-18 19:56:25
|
显示全部楼层
{y[x] -> C[
1] HypergeometricPFQ[{}, {2/3 - 13/(
12 (-8 + 3 I Sqrt[237])^(1/3)) -
1/12 (-8 + 3 I Sqrt[237])^(1/3),
2/3 + 13/(24 (-8 + 3 I Sqrt[237])^(1/3)) + (13 I)/(
8 Sqrt[3] (-8 + 3 I Sqrt[237])^(1/3)) +
1/24 (-8 + 3 I Sqrt[237])^(1/3) - (
I (-8 + 3 I Sqrt[237])^(1/3))/(8 Sqrt[3]),
2/3 + 13/(24 (-8 + 3 I Sqrt[237])^(1/3)) - (13 I)/(
8 Sqrt[3] (-8 + 3 I Sqrt[237])^(1/3)) +
1/24 (-8 + 3 I Sqrt[237])^(1/3) + (
I (-8 + 3 I Sqrt[237])^(1/3))/(8 Sqrt[3])}, (3 k x^4)/
128] + (-3)^((
13 + 4 (-8 + 3 I Sqrt[237])^(1/3) + (-8 + 3 I Sqrt[237])^(2/3))/(
12 (-8 + 3 I Sqrt[237])^(1/3)))
2^(-((7 (13 +
4 (-8 + 3 I Sqrt[237])^(1/3) + (-8 + 3 I Sqrt[237])^(2/3)))/(
12 (-8 + 3 I Sqrt[237])^(1/3)))) k^((
13 + 4 (-8 + 3 I Sqrt[237])^(1/3) + (-8 + 3 I Sqrt[237])^(2/3))/(
12 (-8 + 3 I Sqrt[237])^(1/3))) x^((
13 + 4 (-8 + 3 I Sqrt[237])^(1/3) + (-8 + 3 I Sqrt[237])^(2/3))/(
3 (-8 + 3 I Sqrt[237])^(1/3)))
C[2] HypergeometricPFQ[{}, {4/3 + 13/(
12 (-8 + 3 I Sqrt[237])^(1/3)) +
1/12 (-8 + 3 I Sqrt[237])^(1/3),
1 + 13/(8 (-8 + 3 I Sqrt[237])^(1/3)) + (13 I)/(
8 Sqrt[3] (-8 + 3 I Sqrt[237])^(1/3)) +
1/8 (-8 + 3 I Sqrt[237])^(1/3) - (
I (-8 + 3 I Sqrt[237])^(1/3))/(8 Sqrt[3]),
1 + 13/(8 (-8 + 3 I Sqrt[237])^(1/3)) - (13 I)/(
8 Sqrt[3] (-8 + 3 I Sqrt[237])^(1/3)) +
1/8 (-8 + 3 I Sqrt[237])^(1/3) + (
I (-8 + 3 I Sqrt[237])^(1/3))/(8 Sqrt[3])}, (3 k x^4)/
128] + (-3)^((-13 + 13 I Sqrt[3] +
8 (-8 + 3 I Sqrt[237])^(1/3) - (-8 + 3 I Sqrt[237])^(2/3) -
I Sqrt[3] (-8 + 3 I Sqrt[237])^(2/3))/(
24 (-8 + 3 I Sqrt[237])^(1/3)))
2^(-((7 (-13 + 13 I Sqrt[3] +
8 (-8 + 3 I Sqrt[237])^(1/3) - (-8 + 3 I Sqrt[237])^(2/3) -
I Sqrt[3] (-8 + 3 I Sqrt[237])^(2/3)))/(
24 (-8 + 3 I Sqrt[237])^(1/3))))
k^((-13 + 13 I Sqrt[3] +
8 (-8 + 3 I Sqrt[237])^(1/3) - (-8 + 3 I Sqrt[237])^(2/3) -
I Sqrt[3] (-8 + 3 I Sqrt[237])^(2/3))/(
24 (-8 + 3 I Sqrt[237])^(1/3)))
x^((-13 + 13 I Sqrt[3] +
8 (-8 + 3 I Sqrt[237])^(1/3) - (-8 + 3 I Sqrt[237])^(2/3) -
I Sqrt[3] (-8 + 3 I Sqrt[237])^(2/3))/(
6 (-8 + 3 I Sqrt[237])^(1/3)))
C[4] HypergeometricPFQ[{}, {1 - 13/(
8 (-8 + 3 I Sqrt[237])^(1/3)) + (13 I)/(
8 Sqrt[3] (-8 + 3 I Sqrt[237])^(1/3)) -
1/8 (-8 + 3 I Sqrt[237])^(1/3) - (
I (-8 + 3 I Sqrt[237])^(1/3))/(8 Sqrt[3]),
4/3 - 13/(24 (-8 + 3 I Sqrt[237])^(1/3)) + (13 I)/(
8 Sqrt[3] (-8 + 3 I Sqrt[237])^(1/3)) -
1/24 (-8 + 3 I Sqrt[237])^(1/3) - (
I (-8 + 3 I Sqrt[237])^(1/3))/(8 Sqrt[3]),
1 + (13 I)/(4 Sqrt[3] (-8 + 3 I Sqrt[237])^(1/3)) - (
I (-8 + 3 I Sqrt[237])^(1/3))/(4 Sqrt[3])}, (3 k x^4)/
128] + (-3)^((-13 - 13 I Sqrt[3] +
8 (-8 + 3 I Sqrt[237])^(1/3) - (-8 + 3 I Sqrt[237])^(2/3) +
I Sqrt[3] (-8 + 3 I Sqrt[237])^(2/3))/(
24 (-8 + 3 I Sqrt[237])^(1/3)))
2^(-((7 (-13 - 13 I Sqrt[3] +
8 (-8 + 3 I Sqrt[237])^(1/3) - (-8 + 3 I Sqrt[237])^(2/3) +
I Sqrt[3] (-8 + 3 I Sqrt[237])^(2/3)))/(
24 (-8 + 3 I Sqrt[237])^(1/3))))
k^((-13 - 13 I Sqrt[3] +
8 (-8 + 3 I Sqrt[237])^(1/3) - (-8 + 3 I Sqrt[237])^(2/3) +
I Sqrt[3] (-8 + 3 I Sqrt[237])^(2/3))/(
24 (-8 + 3 I Sqrt[237])^(1/3)))
x^((-13 - 13 I Sqrt[3] +
8 (-8 + 3 I Sqrt[237])^(1/3) - (-8 + 3 I Sqrt[237])^(2/3) +
I Sqrt[3] (-8 + 3 I Sqrt[237])^(2/3))/(
6 (-8 + 3 I Sqrt[237])^(1/3)))
C[3] HypergeometricPFQ[{}, {1 - 13/(
8 (-8 + 3 I Sqrt[237])^(1/3)) - (13 I)/(
8 Sqrt[3] (-8 + 3 I Sqrt[237])^(1/3)) -
1/8 (-8 + 3 I Sqrt[237])^(1/3) + (
I (-8 + 3 I Sqrt[237])^(1/3))/(8 Sqrt[3]),
4/3 - 13/(24 (-8 + 3 I Sqrt[237])^(1/3)) - (13 I)/(
8 Sqrt[3] (-8 + 3 I Sqrt[237])^(1/3)) -
1/24 (-8 + 3 I Sqrt[237])^(1/3) + (
I (-8 + 3 I Sqrt[237])^(1/3))/(8 Sqrt[3]),
1 - (13 I)/(4 Sqrt[3] (-8 + 3 I Sqrt[237])^(1/3)) + (
I (-8 + 3 I Sqrt[237])^(1/3))/(4 Sqrt[3])}, (3 k x^4)/128]}} |
|