找回密码
 欢迎注册
查看: 40901|回复: 15

[求助] 关于p=4k+1数的一个有趣结论,怎么证明

[复制链接]
发表于 2016-9-21 18:32:50 来自手机 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
`p`是素数,`p=a^2+b^2`,且`a`是奇数,`b`是偶数,那么
1) `a`必是`p`的平方剩余
2)`p=8k+1`时,`b`是`p`的平方剩余;`p=8k+5`时,`b`是`p`的平方非剩余。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2017-2-5 21:42:44 | 显示全部楼层
试一下:
第1)问
`\D\left(\frac{a}{p}\right)\left(\frac{p}{a}\right)=\left(\frac{a}{p}\right)\left(\frac{b^2}{a}\right)=\left(\frac{a}{p}\right)=\left(-1\right)^{\frac{(a-1)(p-1)}{4}} =1`

所以`a`恒是`p`的二次剩余。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2017-2-5 21:49:43 | 显示全部楼层
第2)问   令\(\D b=2^tq\), `q`是奇数。

`\D\left(\frac{q}{p}\right)\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)\left(\frac{a^2}{q}\right)=\left(\frac{q}{p}\right)=\left(-1\right)^\frac{(p-1)(q-1)}4=1`

当`p=8k+1`时,`\D t>1,\left(\frac{2}{p}\right)=1`

\(\D\left(\frac{b}{p}\right)=\left(\frac{2^tq}{p}\right)=\left(\frac{2^t}{p}\right)\left(\frac{q}{p}\right)=\left(\frac{2^t}{p}\right)=1\)

所以`b`是`p`的平方剩余。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2017-2-5 21:52:00 | 显示全部楼层
第2)问继续

当`p=8k+5`时,`\D t=1, \left(\frac{2}{p}\right)=-1`.

`\D\left(\frac{b}{p}\right)=\left(\frac{2q}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{q}{p}\right)=\left(\frac{2}{p}\right)=-1`

所以`b`是`p`的平方非剩余。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2017-2-24 18:23:06 | 显示全部楼层
对不含$4k+3$素因子的奇合数,如果$a,b$互质, 此命题似乎依然成立
例,$p=37*2017=255^2+98^2=273^2+10^2$

`\text{JacobiSymbol}[98, 37\cdot2017]=\text{JacobiSymbo}l[10, 37\cdot2017]=-1`
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2017-3-2 08:45:41 | 显示全部楼层
对于5#之`p`非素数的情形,4#的过程依然有效,但2#和3#的不行。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2017-3-3 18:05:22 | 显示全部楼层
\(\left(\frac{p}{a}\right)=\left(\frac{b^2}{a}\right)=1\),所以\(\left(\frac{a}{p}\right)=(-1)^{\frac{(p-1)(a-1)}{4}}\)
同理\(\left(\frac{b}{p}\right)=(-1)^{\frac{(p-1)(b-1)}{4}}\)
即可
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2017-4-16 08:27:58 | 显示全部楼层
manthanein 发表于 2017-2-5 21:52
第2)问继续

当`p=8k+5`时,`\D t=1, \left(\frac{2}{p}\right)=-1`.

$t=2$的情形呢,怎么证
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2017-4-16 08:45:49 | 显示全部楼层
本帖最后由 wsc810 于 2017-4-16 08:55 编辑
hujunhua 发表于 2017-3-2 08:45
对于5#之`p`非素数的情形,4#的过程依然有效,但2#和3#的不行。

$p=37*2017=8*9328+5$

$(\frac{273}{37*2017})=(\frac{255}{ 37*2017})=1$,哪里不行了

$p=41*2017=8*10337+1=184^2+221^2=256^2+131^2$

$(\frac{184}{41*2017})=(\frac{256}{41*2017})=1$

$(\frac{221}{41*2017})=(\frac{131}{41*2017})=1$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-23 00:49 , Processed in 0.038442 second(s), 20 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表