- 注册时间
- 2007-12-27
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 40484
- 在线时间
- 小时
|
发表于 2017-4-3 11:10:31
|
显示全部楼层
上面算法计算结果对于K=3是
$720[(0, -1, 7, 1, 0, 8, -1)][(-130/229,13118/229,0, 0, 0, 0, 0),(-31/229, -99/229, 0, 0, 0, 0, 0),(217/229, 464/229, 7, 1, 0, 8, -1),(-7, 0, 0, 0 ,8, 0, 7),(0, 7 ,1, 0, 0, 0, 0),(19/229, 792/229, 0 ,0, 0 ,0 ,1),(99/229, 12660/229, 7, 0, 0, 8 ,0)]^{n-3}[(0),( 0), (0), (1), (0), (0), (0)]$
然后我们只要取最后5行5列得$720[(7, 1, 0, 8, -1)][( 7, 1, 0, 8, -1),( 0, 0 ,8, 0, 7),(1, 0, 0, 0, 0),(0 ,0, 0 ,0 ,1),(7, 0, 0, 8 ,0)]^{n-3}[ (0), (1), (0), (0), (0)]$
类似K=4的结果是
$5040[(6, 1, 0, 0, -1, 5, 2, 0, 0, 0, 1, 0, 5, 0)][(0, 1, 0 ,0, 0, 0 ,1, 0, 0, 0, 0 ,0, 0, 0),(0 ,0, 7, 0, 0, 0, 0 ,6 ,0, 0, 0, 0, 0, 0),(0, 0, 0, -7/6, 0, 1/6, 0, 0, 1/6, 0, 0 ,0 ,0 ,0),(0, 0 ,0 ,0 ,0, 0, 0 ,0, 0, 0 ,1, 0, 0, 0),(0, 0, 0, 0 ,0, 5, 0, 0, 0 ,6 ,0, 0, 6, 0),(6 ,0, 0, 0, 0, 5, 0, 0, 0, 0, 1, 0 ,5, 0),(0, 0, 0, 0 ,6, 0 ,0, 7, -6, 0, 0, 6, 0, -7),(0, 0, 0 ,0 ,0 ,1 ,0 ,0 ,1, 0 ,0 ,0, 0, 0),(0 ,0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0),(0 ,0, 0, 0, 7/6, 0 ,0, 7/6 ,-1 ,0, 0, 0, 0, -7/6),(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ,1, 0, 0),(0 ,0, 0 ,0, 0, 0 ,0 ,0, 6 ,0, 0, 0, 0 ,7),(0, 0 ,0, 0, 0, 0, 1, 0 ,0, 0, 0 ,1 ,0 ,0),(0, 0, 0, 0 ,0, 0, 0 ,0, 1, 0, 0 ,0 ,0 ,0)]^{n-4}[(0), (1),( 0),( 0), (0),( 0),( 0), (0),( 0), (0), (0), (0), (0),( 0)]$
不过实际计算可以知道矩阵最小多项式还可以降低一次(也就是$(x+1)^2$项可以降低为$(x+1)$),也就是只需要13阶
同样对于K=5,可以验算虽然结果矩阵的特征多项式是
$(x-6)(x-1)^3(x+1)^3(x^2+1)^2(x^4+x^3-x^2+x+6)(x^4+x^3+x^2+x+6)(x^4+x^3+6*x^2+36*x+216)(x^6-x^5-5x^4+5x^3-30x^2-36x+216)(x^6+x^5+5x^4-5x^3-30x^2-36x-216)(x^8-x^7+x^6-x^5+10x^4-6x^3+x^2-6x+36)$
但是其极小多项式为$(x-6)(x-1)(x+1)(x^2+1)(x^4+x^3-x^2+x+6)(x^4+x^3+x^2+x+6)(x^4+x^3+6*x^2+36*x+216)(x^6-x^5-5x^4+5x^3-30x^2-36x+216)(x^6+x^5+5x^4-5x^3-30x^2-36x-216)(x^8-x^7+x^6-x^5+10x^4-6x^3+x^2-6x+36)$, 是一个37次多项式,而对应数列前面若干项(从n=5开始)为
30240
151200
604800
1814400
3628800
46751040
374220000
2524737600
14938560000
77718009600
445531847040
2712276403200
16824964464000
103374343800000
617483630937600
3664753055288640
21837147241644000
130987685561040000
788907380549248800
4744766700436795200
28473260931177834240
170667202760009373600
1023095448436157006400
6137898978940425396000
36838710229709607408000
221094889504876359483840
1326659091470885259511200
7959227075484282169286400
47750852315053352228702400
286497229035411628799241600
1719025119704447664447219840
10314475777660028879863627200
61887537159261232978690790400
371322790337209747988943784800
2227914360433389973865066820000
13367428356945652161399478319040
80204702391166954732387581376800
481229760111874619105995284110400
2887383136829665817272151400242400
17324292695239380514914948686234400
103945650626732360665419727553859840
623673547432474411057945382554831200
3742041506266723081383067390634397600
22452256076663180473072202039484369600
由此也可以利用递推关系式
$ a(n+37)= 4a(n+36) + 6a(n+35) + 4a(n+34) + 21a(n+33) + 1052a(n+32) + 953a(n+31) - 1803a(n+30) - 13334a(n+29) - 77066a(n+28) - 104214a(n+27)- 119566a(n+26)+ 149984a(n+25)+ 2676030a(n+24)+ 2087020a(n+23)+ 1591320a(n+22)+ 16945045a(n+21)+ 6202970a(n+20)- 19560760a(n+19)+ 31584610a(n+18)+ 36046155a(n+17)- 646436970a(n+16)- 519990845a(n+15)+ 306879755a(n+14)- 432091230a(n+13)- 6217952004a(n+12)- 3676588704a(n+11)+ 968486544a(n+10)- 2735044704a(n+9)- 29726450496a(n+8)- 8846537472a(n+7)+ 868361472a(n+6)- 9946685952a(n+5)- 41782127616a(n+4)+ 13060694016a(n+3)- 2176782336a(n+2)+ 13060694016a(n+1) + 78364164096a(n)$推出余下各项 |
|