- 注册时间
 - 2007-12-27
 
- 最后登录
 - 1970-1-1
 
- 威望
 -  星
 
- 金币
 -  枚
 
- 贡献
 -  分
 
- 经验
 -  点
 
- 鲜花
 -  朵
 
- 魅力
 -  点
 
- 上传
 -  次
 
- 下载
 -  次
 
- 积分
 - 49017
 
- 在线时间
 -  小时
 
 
 
 
 
 
 | 
 
 
发表于 2017-3-31 09:07:39
|
显示全部楼层
 
 
 
比如数值表示可以用Pari/Gp如下计算: 
? b=[1,0,0,0,0,1] 
%1 = [1, 0, 0, 0, 0, 1] 
? v=[0,0,0,0,0,720]~ 
%2 = [0, 0, 0, 0, 0, 720]~ 
? m=[6,0,0,7,0,7;0,0,0,0,1,0;0,0,0,1,0,0;0,0,8,0,7,0;1,0,0,0,0,1;0,8,0,7,0,0] 
%3 = 
[6 0 0 7 0 7] 
 
[0 0 0 0 1 0] 
 
[0 0 0 1 0 0] 
 
[0 0 8 0 7 0] 
 
[1 0 0 0 0 1] 
 
[0 8 0 7 0 0] 
 
? mateigen(m) 
%4 = 
[-2 0 7 -0.73224568138195777351247600767754318618 + 0.63585792627329425022285708692064049226*I -0.73224568138195777351247600767754318618 - 0.63585792627329425022285708692064049226*I] 
 
[-1 1 1/8 -0.0037188099808061420345489443378119001906 - 0.086161420681990502393643449803322083513*I -0.0037188099808061420345489443378119001906 + 0.086161420681990502393643449803322083513*I] 
 
[-1 -1 1/8 0.10832533589251439539347408829174664107 - 0.0046754259284801047810504197567694153845*I 0.10832533589251439539347408829174664107 + 0.0046754259284801047810504197567694153845*I] 
 
[1 -1 1 -0.067178502879078694817658349328214971211 - 0.29922725942272670598722686443324258459*I -0.067178502879078694817658349328214971211 + 0.29922725942272670598722686443324258459*I] 
 
[1 1 1 -0.23800383877159309021113243761996161228 + 0.053433439182629768926290511505936175822*I -0.23800383877159309021113243761996161228 - 0.053433439182629768926290511505936175822*I] 
 
[1 1 1 1 1] 
 
? P=%4; 
? P^-1*m*P 
%6 = 
[-1.0000000000000000000000000000000000000 + 0.E-37*I -1.4693679385278593850 E-39 + 0.E-37*I -3.673419846319648463 E-38 + 0.E-38*I 1.4693679385278593850 E-39 + 8.265194654219209041 E-40*I -7.346839692639296925 E-39 - 2.3877229001077715006 E-39*I] 
 
[-5.142787784847507848 E-39 + 0.E-37*I 1.0000000000000000000000000000000000000 + 0.E-37*I -6.538687326448974264 E-38 - 3.159141067834897678 E-38*I 2.5713938924237539236 E-39 + 7.255004196481305714 E-39*I 9.550891600431086002 E-39 - 7.255004196481305714 E-39*I] 
 
[-8.816207631167156310 E-39 + 4.353682780823287065 E-40*I -8.816207631167156310 E-39 + 1.0884206952058217666 E-39*I 7.9999999999999999999999999999999999999 - 9.360417978770067193 E-39*I -2.938735877055718770 E-39 + 7.074734518837841484 E-40*I 0.E-38 - 1.8639204405399697752 E-39*I] 
 
[2.938735877055718770 E-39 - 1.7632415262334312620 E-38*I 1.4693679385278593850 E-38 - 1.7632415262334312620 E-38*I 2.938735877055718770 E-39 - 1.7632415262334312620 E-38*I -0.50000000000000000000000000000000000002 - 2.7838821814150109610597356494592747602*I -2.350988701644575016 E-38 - 2.938735877055718770 E-38*I] 
 
[-1.7632415262334312620 E-38 + 5.289724578700293786 E-38*I 1.7632415262334312620 E-38 + 5.289724578700293786 E-38*I 5.877471754111437540 E-39 + 5.289724578700293786 E-38*I -1.4693679385278593850 E-38 - 5.877471754111437540 E-39*I -0.50000000000000000000000000000000000000 + 2.7838821814150109610597356494592747603*I] 
 
? P^-1*v 
%7 = [34.999999999999999999999999999999999999 + 1.0579449157400587572 E-36*I, 35.999999999999999999999999999999999998 - 1.0579449157400587572 E-36*I, 64.000000000000000000000000000000000000 + 3.134651602192766688 E-37*I, 292.50000000000000000000000000000000000 - 39.602969096903865607333658755210973202*I, 292.50000000000000000000000000000000000 + 39.602969096903865607333658755210973202*I]~ 
? b*P 
%8 = [-1, 1, 8, 0.26775431861804222648752399232245681382 + 0.63585792627329425022285708692064049226*I, 0.26775431861804222648752399232245681382 - 0.63585792627329425022285708692064049226*I] 
? 
由此可以看出,由于数列通项为$b*M^{n-3}*v' = b*P*(P^{-1}MP)^{n-3}*P^{-1}v'$ 
其中$b*P=[-1, 1, 8, 0.26775431861804222648752399232245681382 + 0.63585792627329425022285708692064049226*I, 0.26775431861804222648752399232245681382 - 0.63585792627329425022285708692064049226*I]$ 
$P^{-1}v'= [34.999999999999999999999999999999999999 + 1.0579449157400587572 E-36*I, 35.999999999999999999999999999999999998 - 1.0579449157400587572 E-36*I, 64.000000000000000000000000000000000000 + 3.134651602192766688 E-37*I, 292.50000000000000000000000000000000000 - 39.602969096903865607333658755210973202*I, 292.50000000000000000000000000000000000 + 39.602969096903865607333658755210973202*I]~$ 
而$P^{-1}MP$是对角阵$diag{-1,1,8, -0.5-2.7838821814150109610597356494592747602*I,-0.5+2.7838821814150109610597356494592747602*I}$ 
表示$a(n)=-35*(-1)^(n-3)+36+512*8^(n-3)+(103.5+175.38457742914569054676334591593430989i)*(-0.5-2.7838821814150109610597356494592747602i)^(n-3)+(103.5-175.38457742914569054676334591593430989i)*(-0.5+2.7838821814150109610597356494592747602i)^(n-3)$ 
只是很奇怪,这里P不是方阵,Pari-gp是如何算出$P^{-1}$的而且最后通项好像也没有错 
如果我们设$r_1,r_2$分别是方程$x^2+x+8=0$的根,那么通解应该是 
$a(n)=-35*(-1)^{n-3}+36+512*8^{n-3}+(135+63*r_2)r_1^{n-3}+(135+63*r_1)r_2^{n-3}$ 
上面表达式还可以写成 
$a(n)=36-35*(-1)^{n-3}+512*8^{n-3}+135*(r_1^{n-3}+r_2^{n-3})+504*(r_1^{n-4}+r_2^{n-4})=36-35*(-1)^{n-3}+512*8^{n-3}+135b(n-3)+504b(n-4)$ 
其中$b(n)$是二阶递推数列$b(0)=2,b(1)=-1,b(n+2)=-b(n+1)-8b(n)$ 
或者 
$a(n)=36+35*(-1)^n+8^n+270*\sqrt{8}^{n-3}*cos((n-3)(\pi-arctan(\sqrt{31})))+1008*\sqrt{8}^{n-4}*cos((n-4)(\pi-arctan(\sqrt{31})))$ 
 |   
 
 
 
 |