- 注册时间
- 2007-12-27
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 40484
- 在线时间
- 小时
|
发表于 2017-3-31 09:07:39
|
显示全部楼层
比如数值表示可以用Pari/Gp如下计算:
? b=[1,0,0,0,0,1]
%1 = [1, 0, 0, 0, 0, 1]
? v=[0,0,0,0,0,720]~
%2 = [0, 0, 0, 0, 0, 720]~
? m=[6,0,0,7,0,7;0,0,0,0,1,0;0,0,0,1,0,0;0,0,8,0,7,0;1,0,0,0,0,1;0,8,0,7,0,0]
%3 =
[6 0 0 7 0 7]
[0 0 0 0 1 0]
[0 0 0 1 0 0]
[0 0 8 0 7 0]
[1 0 0 0 0 1]
[0 8 0 7 0 0]
? mateigen(m)
%4 =
[-2 0 7 -0.73224568138195777351247600767754318618 + 0.63585792627329425022285708692064049226*I -0.73224568138195777351247600767754318618 - 0.63585792627329425022285708692064049226*I]
[-1 1 1/8 -0.0037188099808061420345489443378119001906 - 0.086161420681990502393643449803322083513*I -0.0037188099808061420345489443378119001906 + 0.086161420681990502393643449803322083513*I]
[-1 -1 1/8 0.10832533589251439539347408829174664107 - 0.0046754259284801047810504197567694153845*I 0.10832533589251439539347408829174664107 + 0.0046754259284801047810504197567694153845*I]
[1 -1 1 -0.067178502879078694817658349328214971211 - 0.29922725942272670598722686443324258459*I -0.067178502879078694817658349328214971211 + 0.29922725942272670598722686443324258459*I]
[1 1 1 -0.23800383877159309021113243761996161228 + 0.053433439182629768926290511505936175822*I -0.23800383877159309021113243761996161228 - 0.053433439182629768926290511505936175822*I]
[1 1 1 1 1]
? P=%4;
? P^-1*m*P
%6 =
[-1.0000000000000000000000000000000000000 + 0.E-37*I -1.4693679385278593850 E-39 + 0.E-37*I -3.673419846319648463 E-38 + 0.E-38*I 1.4693679385278593850 E-39 + 8.265194654219209041 E-40*I -7.346839692639296925 E-39 - 2.3877229001077715006 E-39*I]
[-5.142787784847507848 E-39 + 0.E-37*I 1.0000000000000000000000000000000000000 + 0.E-37*I -6.538687326448974264 E-38 - 3.159141067834897678 E-38*I 2.5713938924237539236 E-39 + 7.255004196481305714 E-39*I 9.550891600431086002 E-39 - 7.255004196481305714 E-39*I]
[-8.816207631167156310 E-39 + 4.353682780823287065 E-40*I -8.816207631167156310 E-39 + 1.0884206952058217666 E-39*I 7.9999999999999999999999999999999999999 - 9.360417978770067193 E-39*I -2.938735877055718770 E-39 + 7.074734518837841484 E-40*I 0.E-38 - 1.8639204405399697752 E-39*I]
[2.938735877055718770 E-39 - 1.7632415262334312620 E-38*I 1.4693679385278593850 E-38 - 1.7632415262334312620 E-38*I 2.938735877055718770 E-39 - 1.7632415262334312620 E-38*I -0.50000000000000000000000000000000000002 - 2.7838821814150109610597356494592747602*I -2.350988701644575016 E-38 - 2.938735877055718770 E-38*I]
[-1.7632415262334312620 E-38 + 5.289724578700293786 E-38*I 1.7632415262334312620 E-38 + 5.289724578700293786 E-38*I 5.877471754111437540 E-39 + 5.289724578700293786 E-38*I -1.4693679385278593850 E-38 - 5.877471754111437540 E-39*I -0.50000000000000000000000000000000000000 + 2.7838821814150109610597356494592747603*I]
? P^-1*v
%7 = [34.999999999999999999999999999999999999 + 1.0579449157400587572 E-36*I, 35.999999999999999999999999999999999998 - 1.0579449157400587572 E-36*I, 64.000000000000000000000000000000000000 + 3.134651602192766688 E-37*I, 292.50000000000000000000000000000000000 - 39.602969096903865607333658755210973202*I, 292.50000000000000000000000000000000000 + 39.602969096903865607333658755210973202*I]~
? b*P
%8 = [-1, 1, 8, 0.26775431861804222648752399232245681382 + 0.63585792627329425022285708692064049226*I, 0.26775431861804222648752399232245681382 - 0.63585792627329425022285708692064049226*I]
?
由此可以看出,由于数列通项为$b*M^{n-3}*v' = b*P*(P^{-1}MP)^{n-3}*P^{-1}v'$
其中$b*P=[-1, 1, 8, 0.26775431861804222648752399232245681382 + 0.63585792627329425022285708692064049226*I, 0.26775431861804222648752399232245681382 - 0.63585792627329425022285708692064049226*I]$
$P^{-1}v'= [34.999999999999999999999999999999999999 + 1.0579449157400587572 E-36*I, 35.999999999999999999999999999999999998 - 1.0579449157400587572 E-36*I, 64.000000000000000000000000000000000000 + 3.134651602192766688 E-37*I, 292.50000000000000000000000000000000000 - 39.602969096903865607333658755210973202*I, 292.50000000000000000000000000000000000 + 39.602969096903865607333658755210973202*I]~$
而$P^{-1}MP$是对角阵$diag{-1,1,8, -0.5-2.7838821814150109610597356494592747602*I,-0.5+2.7838821814150109610597356494592747602*I}$
表示$a(n)=-35*(-1)^(n-3)+36+512*8^(n-3)+(103.5+175.38457742914569054676334591593430989i)*(-0.5-2.7838821814150109610597356494592747602i)^(n-3)+(103.5-175.38457742914569054676334591593430989i)*(-0.5+2.7838821814150109610597356494592747602i)^(n-3)$
只是很奇怪,这里P不是方阵,Pari-gp是如何算出$P^{-1}$的而且最后通项好像也没有错
如果我们设$r_1,r_2$分别是方程$x^2+x+8=0$的根,那么通解应该是
$a(n)=-35*(-1)^{n-3}+36+512*8^{n-3}+(135+63*r_2)r_1^{n-3}+(135+63*r_1)r_2^{n-3}$
上面表达式还可以写成
$a(n)=36-35*(-1)^{n-3}+512*8^{n-3}+135*(r_1^{n-3}+r_2^{n-3})+504*(r_1^{n-4}+r_2^{n-4})=36-35*(-1)^{n-3}+512*8^{n-3}+135b(n-3)+504b(n-4)$
其中$b(n)$是二阶递推数列$b(0)=2,b(1)=-1,b(n+2)=-b(n+1)-8b(n)$
或者
$a(n)=36+35*(-1)^n+8^n+270*\sqrt{8}^{n-3}*cos((n-3)(\pi-arctan(\sqrt{31})))+1008*\sqrt{8}^{n-4}*cos((n-4)(\pi-arctan(\sqrt{31})))$
|
|