- 注册时间
- 2008-11-26
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 149507
- 在线时间
- 小时
|
发表于 2021-1-25 09:08:46
|
显示全部楼层
- Clear["Global`*"];(*mathematica11.2,win7(64bit)Clear all variables*)
- (*换元法解决这个问题,换元成多项式,软件更容易求解*)
- ff=1/a+1/b+1/c+x*((a^2-1)*(b^2-1)*(c^2-1)-8);
- ans=ToRadicals@FullSimplify@Solve[D[ff,{{a,b,c,x}}]==0,{a,b,c,x}];
- aaa=Grid[ans,Alignment->Left]
- N@aaa
复制代码
\[\begin{array}{llll}
a\to -\sqrt[4]{-3} & b\to -\sqrt[4]{-3} & c\to -\sqrt[4]{-3} & x\to \frac{1}{48} \left((-3)^{3/4}-\sqrt[4]{-3}\right) \\
a\to -i \sqrt[4]{-3} & b\to -i \sqrt[4]{-3} & c\to -i \sqrt[4]{-3} & x\to -\frac{1}{48} i \left(\sqrt[4]{-3}+(-3)^{3/4}\right) \\
a\to i \sqrt[4]{-3} & b\to i \sqrt[4]{-3} & c\to i \sqrt[4]{-3} & x\to \frac{1}{48} i \left(\sqrt[4]{-3}+(-3)^{3/4}\right) \\
a\to \sqrt[4]{-3} & b\to \sqrt[4]{-3} & c\to \sqrt[4]{-3} & x\to -\frac{(-1)^{11/12}}{8\ 3^{3/4}} \\
a\to -(-3)^{3/4} & b\to -\sqrt{\frac{36}{49}-\frac{3 i \sqrt{3}}{49}} & c\to -(-3)^{3/4} & x\to \frac{1}{432} \sqrt{54+78 i \sqrt{3}} \\
a\to -(-3)^{3/4} & b\to -(-3)^{3/4} & c\to -\sqrt{\frac{36}{49}-\frac{3 i \sqrt{3}}{49}} & x\to \frac{1}{432} \sqrt{54+78 i \sqrt{3}} \\
a\to (-3)^{3/4} & b\to (-3)^{3/4} & c\to \frac{1}{7} \sqrt{36-3 i \sqrt{3}} & x\to \frac{1}{432} \left((-3)^{3/4}-9 \sqrt[4]{-3}\right) \\
a\to (-3)^{3/4} & b\to \frac{1}{7} \sqrt{36-3 i \sqrt{3}} & c\to (-3)^{3/4} & x\to \frac{1}{432} \left((-3)^{3/4}-9 \sqrt[4]{-3}\right) \\
a\to -\sqrt{3} & b\to -\sqrt{3} & c\to -\sqrt{3} & x\to -\frac{1}{24 \sqrt{3}} \\
a\to \sqrt{3} & b\to \sqrt{3} & c\to \sqrt{3} & x\to \frac{1}{24 \sqrt{3}} \\
a\to -\sqrt[4]{-1} 3^{3/4} & b\to -\sqrt[4]{-1} 3^{3/4} & c\to \frac{1}{7} \sqrt{36+3 i \sqrt{3}} & x\to -\frac{1}{72} \sqrt{\frac{3}{2}-\frac{13 i}{2 \sqrt{3}}} \\
a\to -\sqrt[4]{-1} 3^{3/4} & b\to \frac{1}{7} \sqrt{36+3 i \sqrt{3}} & c\to -\sqrt[4]{-1} 3^{3/4} & x\to -\frac{1}{72} \sqrt{\frac{3}{2}-\frac{13 i}{2 \sqrt{3}}} \\
a\to \sqrt[4]{-1} 3^{3/4} & b\to -\frac{1}{7} \sqrt{36+3 i \sqrt{3}} & c\to \sqrt[4]{-1} 3^{3/4} & x\to \frac{1}{72} \sqrt{\frac{3}{2}-\frac{13 i}{2 \sqrt{3}}} \\
a\to \sqrt[4]{-1} 3^{3/4} & b\to \sqrt[4]{-1} 3^{3/4} & c\to -\frac{1}{7} \sqrt{36+3 i \sqrt{3}} & x\to \frac{1}{72} \sqrt{\frac{3}{2}-\frac{13 i}{2 \sqrt{3}}} \\
a\to -\sqrt{\frac{36}{49}-\frac{3 i \sqrt{3}}{49}} & b\to -(-3)^{3/4} & c\to -(-3)^{3/4} & x\to \frac{1}{72} \sqrt{\frac{3}{2}+\frac{13 i}{2 \sqrt{3}}} \\
a\to \frac{1}{7} \sqrt{36-3 i \sqrt{3}} & b\to (-3)^{3/4} & c\to (-3)^{3/4} & x\to -\frac{1}{72} \sqrt{\frac{3}{2}+\frac{13 i}{2 \sqrt{3}}} \\
a\to -\frac{1}{7} \sqrt{36+3 i \sqrt{3}} & b\to \sqrt[4]{-1} 3^{3/4} & c\to \sqrt[4]{-1} 3^{3/4} & x\to \frac{1}{72} \sqrt{\frac{3}{2}-\frac{13 i}{2 \sqrt{3}}} \\
a\to \frac{1}{7} \sqrt{36+3 i \sqrt{3}} & b\to -\sqrt[4]{-1} 3^{3/4} & c\to -\sqrt[4]{-1} 3^{3/4} & x\to -\frac{1}{432} \sqrt{54-78 i \sqrt{3}} \\
\end{array}\]
\[
\begin{array}{llll}
a\to -0.930605-0.930605 i & b\to -0.930605-0.930605 i & c\to -0.930605-0.930605 i & x\to -0.0529679+0.0141927 i \\
a\to 0.930605\, -0.930605 i & b\to 0.930605\, -0.930605 i & c\to 0.930605\, -0.930605 i & x\to 0.0529679\, +0.0141927 i \\
a\to -0.930605+0.930605 i & b\to -0.930605+0.930605 i & c\to -0.930605+0.930605 i & x\to -0.0529679-0.0141927 i \\
a\to 0.930605\, +0.930605 i & b\to 0.930605\, +0.930605 i & c\to 0.930605\, +0.930605 i & x\to 0.0529679\, -0.0141927 i \\
a\to 1.61185\, -1.61185 i & b\to -0.859361+0.0616993 i & c\to 1.61185\, -1.61185 i & x\to 0.0231187\, +0.0156565 i \\
a\to 1.61185\, -1.61185 i & b\to 1.61185\, -1.61185 i & c\to -0.859361+0.0616993 i & x\to 0.0231187\, +0.0156565 i \\
a\to -1.61185+1.61185 i & b\to -1.61185+1.61185 i & c\to 0.859361\, -0.0616993 i & x\to -0.0231187-0.0156565 i \\
a\to -1.61185+1.61185 i & b\to 0.859361\, -0.0616993 i & c\to -1.61185+1.61185 i & x\to -0.0231187-0.0156565 i \\
a\to -1.73205 & b\to -1.73205 & c\to -1.73205 & x\to -0.0240563 \\
a\to 1.73205 & b\to 1.73205 & c\to 1.73205 & x\to 0.0240563 \\
a\to -1.61185-1.61185 i & b\to -1.61185-1.61185 i & c\to 0.859361\, +0.0616993 i & x\to -0.0231187+0.0156565 i \\
a\to -1.61185-1.61185 i & b\to 0.859361\, +0.0616993 i & c\to -1.61185-1.61185 i & x\to -0.0231187+0.0156565 i \\
a\to 1.61185\, +1.61185 i & b\to -0.859361-0.0616993 i & c\to 1.61185\, +1.61185 i & x\to 0.0231187\, -0.0156565 i \\
a\to 1.61185\, +1.61185 i & b\to 1.61185\, +1.61185 i & c\to -0.859361-0.0616993 i & x\to 0.0231187\, -0.0156565 i \\
a\to -0.859361+0.0616993 i & b\to 1.61185\, -1.61185 i & c\to 1.61185\, -1.61185 i & x\to 0.0231187\, +0.0156565 i \\
a\to 0.859361\, -0.0616993 i & b\to -1.61185+1.61185 i & c\to -1.61185+1.61185 i & x\to -0.0231187-0.0156565 i \\
a\to -0.859361-0.0616993 i & b\to 1.61185\, +1.61185 i & c\to 1.61185\, +1.61185 i & x\to 0.0231187\, -0.0156565 i \\
a\to 0.859361\, +0.0616993 i & b\to -1.61185-1.61185 i & c\to -1.61185-1.61185 i & x\to -0.0231187+0.0156565 i \\
\end{array}
\] |
|