找回密码
 欢迎注册
楼主: sha1

[讨论] 问一下project euler 241

[复制链接]
发表于 2009-4-25 22:43:51 | 显示全部楼层
原帖由 mathe 于 2009-4-25 18:43 发表 是的. 对于n的任意一个素因子幂$p^a|n$,必然可以得出$p^a
数学知识不够 ,看的很费力,不知道`10^6`,`13`是如何得到的呢? 最终是不是说 只用`10^6`以内的素因子通过$p^a
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-4-26 16:03:05 | 显示全部楼层
定义$A(n)={\sigma(n)}/n$ 那么我们可以有 定理1: 如果$n=\prod_{h=1}^tp_h^{a_h}$,那么$A(n)=\prod_{h=1}^tA(p_h^{a_h})=\prod_{h=1}^t{1+p_h+p_h^2+...+p_h^{a_h}}/{p_h^{a_h}}$ 定理2: 如果$n=\prod_{h=1}^tp_h^{a_h}$,那么$\prod_{h=1}^t{1+p_h}/{p_h}<=A(n)<\prod_{h=1}^t{p_h}/{p_h-1}$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-4-26 16:26:05 | 显示全部楼层

回复 12# mathe 的帖子

再加上一个条件,n必含因子2
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-4-26 16:27:43 | 显示全部楼层
当仅含2和3因子时,只有一种情况,就是2^3*3=24
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-4-26 16:45:53 | 显示全部楼层
原帖由 mathe 于 2009-4-26 16:03 发表 定义$A(n)={\sigma(n)}/n$ 那么我们可以有 定理1: 如果$n=\prod_{h=1}^tp_h^{a_h}$,那么$A(n)=\prod_{h=1}^tA(p_h^{a_h})=\prod_{h=1}^t{1+p_h+p_h^2+...+p_h^{a_h}}/{p_h^{a_h}}$ 定理2: 如果$n=\prod_{h=1}^t ...
谢谢mathe的耐心解答
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-4-26 17:31:40 | 显示全部楼层
记$q_h$为第$h$个素数,即$q_1=2,q_2=3,q_3=5,...$ 引理1:如果n含有k个素因子,那么$A(n)<\prod_{h=1}^kq_h/{q_h-1}$ 引理2:$\prod_{h=1}^16q_h>10^18$ (前16个素数乘积为32589158477190044730>10^18) 引理3:$\prod_{h=1}^15q_h/(q_h-1)~=7.209592601029953410588236494<7.5$ 定理3:如果$n<10^18$,那么$A(n)<7.5$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-4-26 17:32:37 | 显示全部楼层
引理4:如果$n<10^18$而且$A(n)=k+1/2$,那么$1<=k<=6$ 或者说将$A(n)$写成即约形式${2k+1}/2$,那么分子为3到13之间的奇数.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-4-26 18:09:20 | 显示全部楼层
定理4:如果$n<10^18,A(n)={2k+1}/2$,那么如果$p^a|n$,必然有$p^an>=p^a*{1+p+...+p^a}/u>p^{2a}/u>=p^{2a}/13$,于是得出定理4.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-4-26 18:22:49 | 显示全部楼层
至此,最重要的结论都已经得出. 由此,还可以非常容易得出大于$10^6$的素因子只能是1次的,其次还可以证明大于$10^6$的素因子最多只有一个.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-4-26 19:24:04 | 显示全部楼层
出去了几天,一直没机会上网。来看看大牛们的回复
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 20:51 , Processed in 0.022646 second(s), 14 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表