找回密码
 欢迎注册
查看: 49443|回复: 10

[原创] 最新发现 在大合数分解过程中遇到的一个现象

[复制链接]
发表于 2009-4-28 14:46:04 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
设D是待要分解的一个大合数,D=d1*d2 设有D^n=1 (mod p) ,n为成立的最小指数, 当n是奇数时(大于1),则有 d1^n=1, d2^n=1 或者有 d1^n=-1, d2^n=-1;(为什么?谁会证明) 下面对较小的D举一例说明 4181=37*113 4181^3=2^3=1 (mod 7), 37^3=2^3=1 (mod 7), 113^3=1^3=1 (mod 7) 4181^11=18^11=1 (mod 23), 37^11=14^11= -1 (mod 23), 113^11=21^11=-1 (mod 23) 4181^41=31^41=1 (mod 83), 37^41=1 (mod 83), 113^41=30^41=1 (mod 83) 大家想一想,能不能据此建立一个大合数分解的一个有效算法?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-4-28 14:51:21 | 显示全部楼层

忘了说明在这里要求 选取的以模p的素数小于待要分解的合数D

有人会证明吗
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-4-28 18:41:44 | 显示全部楼层

结论是错的

反例如下: 取 d1=7,d2=17,p=31, 则 n=6 使 $(d1*d2)^n -= 1 (mod p)$ 成立, 但 $d1^n -= 4 (mod p),\quadd2^n -= 8 (mod p)$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-4-28 20:15:40 | 显示全部楼层

楼上请注意,这里要求n 是奇数

楼上请注意,这里要求n 是奇数且大于1
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-4-28 20:19:31 | 显示全部楼层
n是奇数.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-4-28 20:50:08 | 显示全部楼层
原帖由 wsc810 于 2009-4-28 14:46 发表 设D是待要分解的一个大合数,D=d1*d2 设有 D^n=1 (mod p) ,n为成立的最小指数 ,当n是奇数时(大于1),则有 d1^n=1, d2^n=1 或者有 d1^n=-1, d2^n=-1;(为什么?谁会证明) 下面对较小的D举一例说 ...
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-4-29 07:34:26 | 显示全部楼层
p=7,n=3的时候就可以有反例了. 当然等式成立的例子会很多, 你可以了解一下素论中一个很基本的定理:费马小定理
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-4-29 07:40:32 | 显示全部楼层
哦,对不起,没有注意到n必须为奇数。 (为方便大家阅读,我将楼主的主题帖重新排版了一遍) 另外想请教一下:d1 与 d2 是否可为合数,以及它们是否要求互素?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-4-29 19:24:27 | 显示全部楼层
D^n=1 (mod p) 当D很大时候不好求吧 否则RSA早破解了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-9-1 14:55:37 | 显示全部楼层
本帖最后由 wsc810 于 2009-9-1 15:16 编辑 反例是什么,math是否可以举出一例。当n是(p-1)/2时好理解。但若不是,如4181£17=1(mod 103),37£17=-1(mod 103),113£17=-1(mod 103)怎么去理解。 这是我用手机浏览时发的,不能打出幂次,就用£代替,希望大家理解。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-28 15:18 , Processed in 0.024943 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表