- 注册时间
- 2010-1-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 28139
- 在线时间
- 小时
|
发表于 2018-1-4 08:54:18
|
显示全部楼层
验算:按升序重新计算
6!-234+1=720-234+1=487
假定1,2,3,4,5,6 的全排列集是按字典排序法作升序排列的,求第487个排列P(487).
首先,将487化作阶乘进位制,487=4*5!+0*4!+1*3!+0*2!+1*1=40101(!).
然后将升序全排列集分为6段:
00001(!)~10000(!): 1XXXXX,
10001(!)~20000(!): 2XXXXX,
20001(!)~30000(!): 3XXXXX,
30001(!)~40000(!): 4XXXXX,
40001(!)~50000(!): 5XXXXX,
50001(!)~100000(!): 6XXXXX。
由于40000(!)<40101(!)<50000(!), 故P(487)位于上述第5段,即5XXXXX段.
再将5XXXXX分作5段:
40001(!)~41000(!): 51XXXX,
41001(!)~42000(!): 52XXXX,
42001(!)~43000(!): 53XXXX,
43001(!)~44000(!): 54XXXX,
44001(!)~50000(!): 56XXXX。
由于40000(!)<40101(!)<41000(!), 故P(487)位于上述第1段,即51XXXX段。
再将51XXXX分作 4段:
40001(!)~40100(!): 512XXX,
40101(!)~40200(!): 513XXX,
40201(!)~40300(!): 514XXX,
40301(!)~41000(!): 516XXX。
由于487=40101(!),可知P(487)正好位于第2段段首,即513246.
所以答案是P(487)=513246. |
|