找回密码
 欢迎注册
查看: 32219|回复: 4

[求助] 概率的分解逼近?

[复制链接]
发表于 2018-3-21 23:39:59 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
函数的逼近在泛函分析中讨论很多,但是如果将函数限制为概率密度函数,那么相关的逼近是否成立的。

我不知道怎么找到相关内容,特来求助大家。

比如对于一般的二元概率密度函数$P(x,y)$,可否找到一簇(最多可数个)一元概率密度函数$P_i(x)$和$Q_i(x)$,以及单调递减的非负系数$\{a_i\}$,使得
$$P(x,y)=\sum_i a_i P_i(x) Q_i(y)$$

这其实就是概率的隐变量分解模型,就是想知道收敛性可以保证吗?这里的条件很宽松,$P_i(x)$和$Q_i(x)$的形式可以是任意的,只要它是概率密度函数即可。
直觉上$P(x,y)$是二元概率密度函数这个条件也降低了难度。

如果$a_i$不限定为非负,那么其实很容易,用一下Wiener's tauberian theorem就很容易找出一簇函数来~。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2018-3-22 14:43:16 | 显示全部楼层
这里应该有些隐含的约束条件,比如 `P(x,y)\in (0,1)`, 以及 `P(x,y)` 在整个定义区间上定积分值为1,且其不定积分分别关于 `x` 和 `y` 单调。这样一来,`P_i(x)` 和 `Q_i(y)` 可能会被约束到一类非常窄的函数空间中。

点评

嗯,是的,我记错了。  发表于 2018-3-24 13:57
P(x,y)>=0即可,不必P(x,y)<1  发表于 2018-3-22 20:16
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2018-3-23 14:59:49 | 显示全部楼层
对的,$P(x,y)\geq 0$且定积分为1。只希望证明这种表示是否存在。

或者更广泛地讲,将系数限定为非负之后,泛函分析中的各种稠密性理论有多少还适用。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-22 22:03 , Processed in 0.021974 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表