数学研发论坛

 找回密码
 欢迎注册
查看: 77|回复: 0

[提问] 将1/n表示成分母小于n的单位分数的和(差)

[复制链接]
发表于 2018-7-3 14:29:10 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有帐号?欢迎注册

x
本帖最后由 lsr314 于 2018-7-3 16:33 编辑

如何判断$1/n$能否表示成分母小于$n$的单位分数的和(差)?
为了方便叙述,这里的单位分数是指分母为正整数,分子等于$1$的分数。
比如$1/44 =-1/11+1/12+1/33$,这里$11,12,33$都小于$44$,所以$1/44$是可以这样表示的。
而$1/4$就不能这样表示。
可以这样表示的数的分母n在数列A278638里。
另一个讨论的帖子:https://math.stackexchange.com/questions/2029163/frac1n-as-a-difference-of-egyptian-fractions-with-all-denominators-n
帖子里已经给出了两个结果,比如
(1)如果$n$可以,那么$n$的倍数也可以。
(2)$1/(mn) = 1/(n(m-n))-1/(m(m-n))$,其中$n<m<2n$.
除此之外,还可以找到类似的公式,比如$1/(a ( 3 a-2))=-1/(2 a) + 1/(3 a - 2) + 1/(6 a - 4)$,以及$1/(a ( 3 a+2))=1/(2 a) - 1/(3 a + 2) - 1/(6 a + 4)$
更一般地,$±1/(a ( (k+1) a±k))=1/(k a) - 1/((k+1) a ± k) - 1/(k((k+1) a ± k))$,其中$k<a$.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2018-7-18 05:33 , Processed in 0.045413 second(s), 16 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表