- 注册时间
- 2009-2-12
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 23498
- 在线时间
- 小时
|
楼主 |
发表于 2018-7-16 17:14:28
|
显示全部楼层
赞.我也找到了这个规律.
先是根据连分数计算,提取分子.排除平凡解$a+1/a$.
- Table[{n,Expand[Numerator[Factor[FromContinuedFraction[Join[{a},x (-1)^Range[0,n-2],{(-1)^(n-1) a}]]-x]/(-1-a^2+a x)]]},{n,20}]//Column
复制代码
然后,找到了这个关于$x$的多项式方程的规律, $\sum _{k=0}^{\frac{n}{2}} (-1)^{k-1} C_{n-k-1}^{k} x^{n-2 k-1} = \frac{ (x-\sqrt{x^2-4})^n-(x+\sqrt{x^2-4})^n}{2^{n}\sqrt{x^2-4}}=0$
换种表达方式,就是设关于$u$的方程$u^2-x u+1=0$的两个根是$u_1,u_2$,那么对于一般的$n$, $x$的值就是关于参数$x$的$n-1$次多项式方程$\frac{u_1^n-u_2^n}{u_1-u_2} = 0$的实根.
{2,-x}
{3,1-x^2}
{4,2 x-x^3}
{5,-1+3 x^2-x^4}
{6,-3 x+4 x^3-x^5}
{7,1-6 x^2+5 x^4-x^6}
{8,4 x-10 x^3+6 x^5-x^7}
{9,-1+10 x^2-15 x^4+7 x^6-x^8}
{10,-5 x+20 x^3-21 x^5+8 x^7-x^9}
{11,1-15 x^2+35 x^4-28 x^6+9 x^8-x^10}
{12,6 x-35 x^3+56 x^5-36 x^7+10 x^9-x^11}
{13,-1+21 x^2-70 x^4+84 x^6-45 x^8+11 x^10-x^12}
{14,-7 x+56 x^3-126 x^5+120 x^7-55 x^9+12 x^11-x^13}
{15,1-28 x^2+126 x^4-210 x^6+165 x^8-66 x^10+13 x^12-x^14}
{16,8 x-84 x^3+252 x^5-330 x^7+220 x^9-78 x^11+14 x^13-x^15}
{17,-1+36 x^2-210 x^4+462 x^6-495 x^8+286 x^10-91 x^12+15 x^14-x^16}
{18,-9 x+120 x^3-462 x^5+792 x^7-715 x^9+364 x^11-105 x^13+16 x^15-x^17}
{19,1-45 x^2+330 x^4-924 x^6+1287 x^8-1001 x^10+455 x^12-120 x^14+17 x^16-x^18}
{20,10 x-165 x^3+792 x^5-1716 x^7+2002 x^9-1365 x^11+560 x^13-136 x^15+18 x^17-x^19}
|
|