- 注册时间
- 2014-1-19
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 4905
- 在线时间
- 小时
|
发表于 2018-9-8 19:19:15
|
显示全部楼层
本帖最后由 葡萄糖 于 2018-9-8 19:34 编辑
??? 发表于 ????-?-? ??:??
Incidentally, Fermat proposed this problem in a letter to Frenicle in 1640, and later claimed to have a proof, although as usual he never shared it with anyone. Weil says that Euler published (posthumously) a proof in 1780, but “it is somewhat confusedly written, obviously by his assistants, at a time when he was totally blind”. Weil then says a better proof was given by J. Itard in 1973, but provides no description. Dickson's "History of the Theory of Numbers" describes a alleged proof (attributed to Bronwin and Furnass) of this proposition, but the “proof” is incomplete at best.
此网站给出了另一个问题的历史
这个问题可以追溯到费马(可惜,费马依旧没有留下他的证明),欧拉最先证出这个命题:
四个完全平方数不能构成等差数列
https://www.mathpages.com/home/kmath044/kmath044.htm
但是不能认为:“等差数列中不存在四个完全平方数”
实际上等差数列中可以存在四个完全平方数,如\(7^2,13^2,17^2,409,23^2\)
\(13^2-7^2=17^2-13^2=409-17^2=23^2-409=120\)
Leonhard Euler proved, that there is no sequence of four squares in arithmetic progression.
https://en.wikipedia.org/wiki/Congruum |
|