帐号 自动登录 找回密码 密码 欢迎注册
 搜索

# [原创] 与正三角形均匀带电薄片电场强度有关的曲面积分

### 马上注册，结交更多好友，享用更多功能，让你轻松玩转社区。

x
2.28  正三角形带电薄片（带正电荷）位于$$\,\Sigma\colon\,x+y+z=-a$$（其中$$\,a>0$$）的平面上，且带电薄片限定于$$-a\le x\le 0$$与$$-a\le y\le 0$$之间，
其电荷面密度为$$\sigma$$，试求出原点处的电场强度$$\boldsymbol{E}$$（矢量）
$\left|\overrightarrow{\boldsymbol{E}}\,\right|\,=\sqrt{3}\displaystyle\iint\limits_{\Sigma\colon\,x+y+z=-a}\dfrac{\sigma\,\,{\rm\,d}S}{4\pi\varepsilon_0\left(x^2+y^2+z^2\right)}\dfrac{\left|x\right|}{\sqrt{x^2+y^2+z^2}}$

$\big|\overrightarrow{\boldsymbol{E}}\big|\,\cos\langle\overrightarrow{\boldsymbol{E}},\overrightarrow{\boldsymbol{i}}\rangle=\displaystyle\iint\limits_{\Sigma\colon\,x+y+z=-a}\dfrac{\sigma\,\left|x\right|\,{\rm\,d}S}{4\pi\varepsilon_0\left(x^2+y^2+z^2\right)^{\frac{3}{2}}}$
$\big|\overrightarrow{\boldsymbol{E}}\big|\,\cos\langle\overrightarrow{\boldsymbol{E}},\overrightarrow{\boldsymbol{j}}\rangle=\displaystyle\iint\limits_{\Sigma\colon\,x+y+z=-a}\dfrac{\sigma\,\left|y\right|\,{\rm\,d}S}{4\pi\varepsilon_0\left(x^2+y^2+z^2\right)^{\frac{3}{2}}}$
$\big|\overrightarrow{\boldsymbol{E}}\big|\,\cos\langle\overrightarrow{\boldsymbol{E}},\overrightarrow{\boldsymbol{k}}\rangle=\displaystyle\iint\limits_{\Sigma\colon\,x+y+z=-a}\dfrac{\sigma\,\left|z\right|\,{\rm\,d}S}{4\pi\varepsilon_0\left(x^2+y^2+z^2\right)^{\frac{3}{2}}}$

\begin{align*}
\big|\overrightarrow{\boldsymbol{E}}\big|\,&=\sqrt{3}\displaystyle\iint\limits_{\Sigma\colon\,x+y+z=-a}\dfrac{\sigma\,\left|x\right|\,{\rm\,d}S}{4\pi\varepsilon_0\left(x^2+y^2+z^2\right)^{\frac{3}{2}}}\\
&=\frac{\sqrt{3}\,\sigma}{4\pi\varepsilon_0}
\displaystyle\iint\limits_{\Sigma\colon\,x+y+z=-a}\dfrac{\,\left|x\right|\,}{\left(x^2+y^2+z^2\right)^{\frac{3}{2}}}{\rm\,d}S\\
&=\frac{\sqrt{3}\,\sigma}{4\pi\varepsilon_0}
\int_{-a}^0\int_{-a-y}^0 \dfrac{\sqrt{3}\,\left|x\right|}{\left(x^2+y^2+\left(-a-x-y\right)^2\right)^{\frac{3}{2}}}{\rm\,d}x{\rm\,d}y\\
&=\frac{\sqrt{3}\,\sigma}{4\pi\varepsilon_0}
\int_{-a}^0\int_{-a-y}^0 \dfrac{\sqrt{3}\,\left|x\right|}{\left(x^2+y^2+\left(a+x+y\right)^2\right)^{\frac{3}{2}}}{\rm\,d}x{\rm\,d}y\\
&=\frac{\sqrt{3}\,\sigma}{4\pi\varepsilon_0}
\int_0^a\int_0^{a-y} \dfrac{\sqrt{3}\,x}{\left(x^2+y^2+\left(a-x-y\right)^2\right)^{\frac{3}{2}}}{\rm\,d}x{\rm\,d}y\\
&=\frac{3\,\sigma}{4\pi\varepsilon_0}
\int_0^a\int_0^{a-y} \dfrac{\,x}{\left(x^2+y^2+\left(a-x-y\right)^2\right)^{\frac{3}{2}}}{\rm\,d}x{\rm\,d}y\\
\end{align*}

1. \!$$2. \*SubsuperscriptBox[\(\[Integral]$$, $$0$$, $$1$$]$$3. \*SubsuperscriptBox[\(\[Integral]$$, $$0$$, $$1 - y$$]
4. \*FractionBox[$$x$$,
5. SuperscriptBox[$$( 6. \*SuperscriptBox[\(x$$, $$2$$] +
7. \*SuperscriptBox[$$y$$, $$2$$] +
8. \*SuperscriptBox[$$(1 - x - y)$$, $$2$$])\),
9. FractionBox[$$3$$, $$2$$]]] \[DifferentialD]x \[DifferentialD]y\)\) \
10. // FullSimplify

 因为结果是实数常数，可以让Mathematica先分离实虚部，再逐层简化。于是最后一句代码改成 //ComplexExpand//FullSimplify//@#&复制代码

 本帖最后由 zeroieme 于 2018-12-6 08:19 编辑 AbsoluteTiming[ \!$$\*SubsuperscriptBox[\(\[Integral]$$, $$0$$, $$a$$]$$\*SubsuperscriptBox[\(\[Integral]$$, $$0$$, $$a - y$$] \*FractionBox[$$x$$, SuperscriptBox[$$( \*SuperscriptBox[\(x$$, $$2$$] + \*SuperscriptBox[$$y$$, $$2$$] + \*SuperscriptBox[$$(a - x - y)$$, $$2$$])\), FractionBox[$$3$$, $$2$$]]] \[DifferentialD]x \[DifferentialD]y\)\) //     ComplexExpand // FullSimplify[#, a > 0] & //@ # &]复制代码 直接对$$a$$二重积分而不代入数值 ，算出来的也是常数$$\frac{\pi }{6}$$。

### 评分

 如果//FullSimplify[#, a > 0] & //@ # &复制代码不够力就上大招 //(#//FunctionExpand//PowerExpand[#,Assumptions->True]&//FullSimplify[#,a>0]&)&//@#&复制代码 用FunctionExpand和PowerExpand解开ArcTan与Log

 zeroieme 发表于 2018-12-6 12:03 如果不够力就上大招 用FunctionExpand和PowerExpand解开ArcTan与Log 所以$$\pi +\sqrt{2} \log \left(17-12 \sqrt{2}\right)-\tan ^{-1}\left(\frac{4 \sqrt{2}}{7}\right)-2 \tan ^{-1}\left(2 \sqrt{2}\right)+4 \sqrt{2} \sinh ^{-1}(1)=0$$么…… 或者说这里给出了一个pi的表达式 本来觉得很神奇 忽然想起高中有个东西叫倍角公式…… 瞬间觉得自己被教做人了……

 .·.·. 发表于 2018-12-7 18:47 所以$$\pi +\sqrt{2} \log \left(17-12 \sqrt{2}\right)-\tan ^{-1}\left(\frac{4 \sqrt{2}}{7}\right)-2 ... \(\sqrt{2} \log \left(17-12 \sqrt{2}\right)+4 \sqrt{2} \sinh ^{-1}(1)=0$$ 反三角函数反双曲三角函数转对数后可以合并

 zeroieme 发表于 2018-12-7 20:52 $$\sqrt{2} \log \left(17-12 \sqrt{2}\right)+4 \sqrt{2} \sinh ^{-1}(1)=0$$ 反三角函数反双曲三角函 ... 才发现Mathematica好坑 FullSimplify[4 Sqrt[2] ArcSinh[1]+Sqrt[2] Log[17-12 Sqrt[2]]] FullSimplify[\[Pi]-ArcTan[(4 Sqrt[2] )/7]-2ArcTan[2Sqrt[2]]] FullSimplify[(\[Pi]-ArcTan[(4 Sqrt[2])/7]-2ArcTan[2Sqrt[2]])+(Sqrt[2] Log[17-12 Sqrt[2]]+4 Sqrt[2] ArcSinh[1])]复制代码 这玩意的输出是 $$0$$ $$0$$ $$\pi +\sqrt{2} \log \left(17-12 \sqrt{2}\right)-\tan ^{-1}\left(\frac{4 \sqrt{2}}{7}\right)-2 \tan ^{-1}\left(2 \sqrt{2}\right)+4 \sqrt{2} \sinh ^{-1}(1)$$

 与$a$无关是因为  这个积分是 无量纲的。

楼主| 发表于 2018-12-8 22:59:44 | 显示全部楼层
 与正三角形均匀带电薄片电场强度有关的曲面积分 \begin{align*} &&&\int_0^a\int_0^{a-y} \dfrac{\,x}{\left(x^2+y^2+\left(a-x-y\right)^2\right)^{\frac{3}{2}}}{\rm\,d}x{\rm\,d}y\\ &&\overset{\begin{cases}   x\,=\,a\,\cdot\,u\\   y\,=\,a\,\cdot\,v\\    \end{cases}}{\overline{\overline{\hspace{3cm}}}}&\int_0^a\int_0^{a-av} \dfrac{\,a\cdot u}{\left(a^2u^2+a^2v^2+\left(a-au-av\right)^2\right)^{\frac{3}{2}}}{\rm\,d}\left(au\right){\rm\,d}\left(av\right)\\ &&=&\int_0^1\int_0^{1-v} \dfrac{u}{\left(u^2+v^2+\left(1-u-v\right)^2\right)^{\frac{3}{2}}}{\rm\,d}u{\rm\,d}v\\ &&=&\int_0^1\int_0^{1-y} \dfrac{\,x}{\left(x^2+y^2+\left(1-x-y\right)^2\right)^{\frac{3}{2}}}{\rm\,d}x{\rm\,d}y\\ \end{align*} \begin{align*} &&&\int_0^{1-y} \dfrac{x}{\left(x^2+y^2+\left(1-x-y\right)^2\right)^{\frac{3}{2}}}{\rm\,d}x\\   &&\overset{ b=\frac{1-y}{2} }{\overline{\overline{\hspace{2cm}}}}&\int_0^{2b} \dfrac{x}{\left(x^2+y^2+\left(-x+1-y\right)^2\right)^{\frac{3}{2}}}{\rm\,d}x\\ &&=&\int_0^{2b} \dfrac{x}{\left(x^2+y^2+x^2-2\left(1-y\right)x+\left(1-y\right)^2\right)^{\frac{3}{2}}}{\rm\,d}x\\ &&=&\int_0^{2b} \dfrac{x}{\left(2x^2-2\left(1-y\right)x+2\left(\frac{1-y}{2}\right)^2+y^2+\frac{\left(1-y\right)^2}{2}\right)^{\frac{3}{2}}}{\rm\,d}x\\ &&=&\int_0^{2b} \dfrac{x}{\left(2\left(x-\frac{1-y}{2}\right)^2+y^2+\frac{\left(1-y\right)^2}{2}\right)^{\frac{3}{2}}}{\rm\,d}x\\ &&=&\int_0^{2b} \dfrac{x}{\left(2\left(x-b\right)^2+y^2+2b^2\right)^{\frac{3}{2}}}{\rm\,d}x\\ &&=&\int_{-b}^b \dfrac{t+b}{\left(2t^2+y^2+2b^2\right)^{\frac{3}{2}}}{\rm\,d}t=\int_0^b \dfrac{2b}{\left(2t^2+y^2+2b^2\right)^{\frac{3}{2}}}{\rm\,d}t\\ &&=&\left.\dfrac{2bt}{\left(y^2+2b^2\right)\sqrt{2t^2+y^2+2b^2}}\right|_0^b=\dfrac{2b^2}{\left(y^2+2b^2\right)\sqrt{2b^2+y^2+2b^2}}\\ &&=&\dfrac{2b^2}{\left(y^2+2b^2\right)\sqrt{y^2+4b^2}}=\dfrac{2\left(\frac{1-y}{2}\right)^2}{\left(y^2+2\left(\frac{1-y}{2}\right)^2\right)\sqrt{y^2+4\left(\frac{1-y}{2}\right)^2}}\\ &&=&\dfrac{\left(1-y\right)^2}{\left(2y^2+\left(1-y\right)^2\right)\sqrt{y^2+\left(1-y\right)^2}}\\ \end{align*} \begin{align*} &&&\int_0^1\dfrac{\left(1-y\right)^2}{\left(2y^2+\left(1-y\right)^2\right)\sqrt{y^2+\left(1-y\right)^2}}{\rm\,d}y\\   &&=&\int_0^1\dfrac{y^2}{\left(2\left(1-y\right)^2+y^2\right)\sqrt{\left(1-y\right)^2+y^2}}{\rm\,d}y\\ &&=&\int_0^1\dfrac{y^2}{\left(2\left(y^2-2y+1\right)+y^2\right)\sqrt{2y^2-2y+1}}{\rm\,d}y\\ &&=&\int_0^1\dfrac{y^2}{\left(3y^2-4y+2\right)\sqrt{2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}}}{\rm\,d}y\\ &&\overset{ y-\frac{1}{2}=\frac{1}{2}\sinh t }{\overline{\overline{\hspace{3cm}}}}&\int_{\ln\left(\sqrt{2}-1\right)}^{\ln\left(\sqrt{2}+1\right)}\dfrac{\left(\frac{1}{2}\sinh t +\frac{1}{2}\right)^2}{\left(3\left(\frac{1}{2}\sinh t +\frac{1}{2}\right)^2-4\left(\frac{1}{2}\sinh t +\frac{1}{2}\right)+2\right)\sqrt{\frac{1}{2}\sinh^2t +\frac{1}{2}}}{\rm\,d}\left(\frac{1}{2}\sinh t \right)\\ &&=&\frac{1}{\sqrt{2\,}\,}\int_{\ln\left(\sqrt{2}-1\right)}^{\ln\left(\sqrt{2}+1\right)}\dfrac{\left(\frac{1}{2}\sinh t +\frac{1}{2}\right)^2}{3\left(\frac{1}{2}\sinh t +\frac{1}{2}\right)^2-4\left(\frac{1}{2}\sinh t +\frac{1}{2}\right)+2}{\rm\,d}t\\ &&=&\frac{1}{\sqrt{2\,}\,}\int_{\ln\left(\sqrt{2}-1\right)}^{\ln\left(\sqrt{2}+1\right)}\dfrac{\left(e^{2t}+2e^t-1\right)^2}{3e^{4t}-4e^{3t}+6e^{2t}+4e^t+3}{\rm\,d}t\\ &&=&\frac{1}{\sqrt{2\,}\,}\int_{\ln\left(\sqrt{2}-1\right)}^{\ln\left(\sqrt{2}+1\right)}\dfrac{\left(e^{2t}+2e^t-1\right)^2}{\left(3e^{4t}-4e^{3t}+6e^{2t}+4e^t+3\right)e^t}{\rm\,d}\left(e^t\right)\\ &&\overset{e^t=w}{\overline{\overline{\hspace{3cm}}}}&\,\,\frac{1}{\sqrt{2\,}\,}\int_{\sqrt{2}-1}^{\sqrt{2}+1}\dfrac{\left(w^2+2w-1\right)^2}{\left(w^2-2w+3\right)\left(3w^2+2w+1\right)w}{\rm\,d}w\\ \end{align*} \begin{align*} &&&\frac{1}{\sqrt{2\,}\,}\int_{\sqrt{2}-1}^{\sqrt{2}+1}\dfrac{\left(w^2+2w-1\right)^2}{\left(w^2-2w+3\right)\left(3w^2+2w+1\right)w}{\rm\,d}w\\ &&=&\frac{1}{\sqrt{2\,}\,}\int_{\sqrt{2}-1}^{\sqrt{2}+1}\dfrac{\left(w^2+2w-1\right)^2}{\left(w^2-2w+3\right)\left(3w^2+2w+1\right)w}{\rm\,d}w\\ &&=&\frac{1}{\sqrt{2\,}\,}\int_{\sqrt{2}-1}^{\sqrt{2}+1}\dfrac{1}{3w}{\rm\,d}w+\frac{1}{\sqrt{2\,}\,}\int_{\sqrt{2}-1}^{\sqrt{2}+1}\dfrac{2\left(1+w\right)}{3\left(w^2-2w+3\right)}{\rm\,d}w-\frac{1}{\sqrt{2\,}\,}\int_{\sqrt{2}-1}^{\sqrt{2}+1}\dfrac{2\left(1+w\right)}{3w^2+2w+1}{\rm\,d}w\\ &&=&\,\boxed{\frac{\pi}{6}} \end{align*}

 您需要登录后才可以回帖 登录 | 欢迎注册 本版积分规则 回帖后跳转到最后一页

GMT+8, 2019-8-25 08:09 , Processed in 0.057306 second(s), 20 queries .