找回密码
 欢迎注册
查看: 10907|回复: 10

[分享] 三角函数高次有理分式的不定积分

[复制链接]
发表于 2018-12-19 11:31:35 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
\[ \color{black}{\int \dfrac{\cos^3x+\sin^3x}{1+\sin^4x}{\rm\,d}x} \]
\begin{align*}
&&\color{black}{=\,\,}&\color{black}{\frac{1}{4\sqrt{1+\sqrt{2}\,}}\arctan\left(\frac{\sqrt{2\left(1+\sqrt{2}\,\right)}+2\cos x}{\sqrt{2\left(\sqrt{2}-1\right)}}\right)-\frac{1}{4\sqrt{1+\sqrt{2}\,}}\arctan\left(\frac{\sqrt{2\left(1+\sqrt{2}\,\right)}-2\cos x}{\sqrt{2\left(\sqrt{2}-1\right)}}\right)}\\
&&&\color{black}{+\frac{\sqrt{1+\sqrt{2}\,}}{8}\ln\left(\frac{\cos^2x-\sqrt{1+\sqrt{2}\,}\cos x+\sqrt2}{\cos^2x+\sqrt{1+\sqrt{2}\,}\cos x+\sqrt2}\right)+\frac{1}{2\sqrt2\,}\ln\left(\frac{\sin^2x+\sqrt{2}\sin x+1}{\sin^2x-\sqrt{2}\sin x+1}\right)+C}
\end{align*}
还可以化为更简洁的形式吗?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2018-12-19 12:02:33 | 显示全部楼层
\[\left(-\frac{1}{4}+\frac{i}{4}\right) \sqrt[4]{-1} \left(-\tanh ^{-1}\left(\sqrt[4]{-1} \sin (x)\right)+\tanh ^{-1}\left((-1)^{3/4} \sin (x)\right)+\sqrt[8]{-1} \sqrt[4]{2} \left(-i \tan ^{-1}\left(\frac{(-1)^{7/8} \tan \left(\frac{x}{2}\right)+(-1)^{5/8}}{\sqrt[4]{2}}\right)+(-1)^{3/4} \tanh ^{-1}\left(\frac{(-1)^{5/8} \left(\tan \left(\frac{x}{2}\right)+\sqrt[4]{-1}\right)}{\sqrt[4]{2}}\right)+(-1)^{3/4} \tanh ^{-1}\left(\frac{(-1)^{7/8} \left((-1)^{3/4} \tan \left(\frac{x}{2}\right)+1\right)}{\sqrt[4]{2}}\right)+\tanh ^{-1}\left(\frac{\sqrt[8]{-1}-(-1)^{3/8} \tan \left(\frac{x}{2}\right)}{\sqrt[4]{2}}\right)\right)-\tanh ^{-1}\left(\sqrt[4]{-1} \csc (x)\right)+\tanh ^{-1}\left((-1)^{3/4} \csc (x)\right)\right)\]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2018-12-19 12:05:02 | 显示全部楼层
有这个表达式就很不错了,要求那么高干啥
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2018-12-19 13:13:28 | 显示全部楼层
反正切部分似乎可以合并成,我没有讨论区间
\(\frac{\tan ^{-1}\left(\frac{\sqrt{2 \left(\sqrt{2}-1\right)} \cos (x)}{\sqrt{2}-\cos ^2(x)}\right)}{4 \sqrt{1+\sqrt{2}}}\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2018-12-20 14:42:32 | 显示全部楼层
  1. Factor[Total/@GatherBy[List@@Int[(Cos[x]^3+Sin[x]^3)/(1+Sin[x]^4),x],Round[LeafCount@#,3]&]]/.{ArcTan[x_]-ArcTan[y_]:>ArcTan[(x-y)/(1+x y)//Simplify],Log[x_]-Log[y_]:>Log[x/y//Simplify]}//Total
  2. D[%,x]==(Cos[x]^3+Sin[x]^3)/(1+Sin[x]^4)//FullSimplify
复制代码

将arctan和log合并一下:

$-\frac{\sqrt{-1+\sqrt{2}}}{4} \tan ^{-1}\left(\frac{\sqrt{2+2 \sqrt{2}} \cos (x)}{-2-\sqrt{2}+\left(1+\sqrt{2}\right) \cos ^2(x)}\right)+\frac{\sqrt{1+\sqrt{2}}}{8} \log \left(\frac{\sqrt{2}-\sqrt{2+2 \sqrt{2}} \cos (x)+\cos ^2(x)}{\sqrt{2}+\sqrt{2+2 \sqrt{2}} \cos (x)+\cos ^2(x)}\right)-\frac{\sqrt{2}}{4} \log \left(\frac{1-\sqrt{2} \sin (x)+\sin ^2(x)}{1+\sqrt{2} \sin (x)+\sin ^2(x)}\right)$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2018-12-21 02:37:54 | 显示全部楼层
arctan内还可以再简化一点,但这个回复要点是楼主的结果是错的,害我验算到现在。幸好5#结果是对的。
\(\frac{\log \left(\frac{\sin ^2(x)+\sqrt{2} \sin (x)+1}{\sin ^2(x)-\sqrt{2} \sin (x)+1}\right)}{2 \sqrt{2}}+\frac{1}{8} \sqrt{1+\sqrt{2}} \log \left(\frac{\cos ^2(x)-\color{red}{\sqrt{2+2 \sqrt{2}}} \cos (x)+\sqrt{2}}{\cos ^2(x)+\color{red}{\sqrt{2+2 \sqrt{2}}} \cos (x)+\sqrt{2}}\right)+\frac{1}{4} \sqrt{\sqrt{2}-1} \tan ^{-1}\left(\frac{\sqrt{2 \left(\sqrt{2}-1\right)} \cos (x)}{\sqrt{2}-\cos ^2(x)}\right)\)

点评

谢谢!辛苦了~  发表于 2018-12-21 11:08
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2018-12-21 12:36:45 | 显示全部楼层
本帖最后由 葡萄糖 于 2018-12-21 12:45 编辑
zeroieme 发表于 2018-12-21 02:37
arctan内还可以再简化一点,但这个回复要点是楼主的结果是错的,害我验算到现在。幸好5#结果是对的。
...


谢谢了!
整理一下,漂亮多了
\[\color{black}{\int \dfrac{\cos^3x+\sin^3x}{1+\sin^4x}{\rm\,d}x}\]
\begin{align*}

&&\color{black}{=\,\,}&\color{black}{+\frac{\sqrt{\sqrt{2}-1}}{4}\arctan\left(\frac{\sqrt{2\left(\sqrt{2}-1\right)}\cos (x)}{\sqrt{2}-\cos^2(x)}\right)
+\frac{1}{2\sqrt{2}}\ln\left(\frac{\sin^2(x)+\sqrt{2}\sin (x)+1}{\sin ^2(x)-\sqrt{2}\sin (x)+1}\right)}\\
&&&\color{black}{+\frac{\sqrt{1+\sqrt{2}\,}}{8}\ln\left(\frac
{\cos ^2(x)-\color{red}{\sqrt{2\left(1+\sqrt{2}\,\right)\,}}\cos(x)+\sqrt{2}}
{\cos ^2(x)+\color{red}{\sqrt{2\left(1+\sqrt{2}\,\right)\,}} \cos (x)+\sqrt{2}}\right)+C
}\\

\end{align*}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2018-12-21 19:03:45 | 显示全部楼层
本帖最后由 zeroieme 于 2018-12-21 19:52 编辑

我就是觉得对数内可以分解,终于得到了
\(\frac{1}{4} \sqrt{\sqrt{2}-1} \tan ^{-1}\left(\frac{\sqrt{2 \left(\sqrt{2}-1\right)} \cos (x)}{\sqrt{2}-\cos ^2(x)}\right)+\frac{1}{8} \left(\sqrt{1+\sqrt{2}}+2 \sqrt{2}\right) \log \left(\frac{\sin (x)-\sqrt{1+\sqrt{2}} \cos (x)+\sqrt{2}+1}{-\sin (x)+\sqrt{1+\sqrt{2}} \cos (x)+\sqrt{2}+1}\right)+\frac{1}{8} \left(2 \sqrt{2}-\sqrt{1+\sqrt{2}}\right) \log \left(\frac{\sin (x)+\sqrt{1+\sqrt{2}} \cos (x)+\sqrt{2}+1}{-\sin (x)-\sqrt{1+\sqrt{2}} \cos (x)+\sqrt{2}+1}\right)\)

接着引入辅助角

\(\frac{1}{8} \left(2 \sqrt{2}-\sqrt{1+\sqrt{2}}\right) \log \left(\frac{1+\sqrt{2-\sqrt{2}} \cos \left(x-\cos ^{-1}\left(\frac{1}{\sqrt[4]{2}}\right)\right)}{1-\sqrt{2-\sqrt{2}} \cos \left(x-\cos ^{-1}\left(\frac{1}{\sqrt[4]{2}}\right)\right)}\right)+\frac{1}{8} \left(2 \sqrt{2}+\sqrt{1+\sqrt{2}}\right) \log \left(\frac{1-\sqrt{2-\sqrt{2}} \cos \left(x+\cos ^{-1}\left(\frac{1}{\sqrt[4]{2}}\right)\right)}{1+\sqrt{2-\sqrt{2}} \cos \left(x+\cos ^{-1}\left(\frac{1}{\sqrt[4]{2}}\right)\right)}\right)+\frac{1}{4} \sqrt{\sqrt{2}-1} \tan ^{-1}\left(\frac{\sqrt{2 \left(\sqrt{2}-1\right)} \cos (x)}{\sqrt{2}-\cos ^2(x)}\right)\)

点评

好对称!多漂亮的式子~  发表于 2018-12-21 23:16
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2018-12-22 01:08:01 | 显示全部楼层
本帖最后由 zeroieme 于 2018-12-22 09:54 编辑

在换元复数域完全分解时最对称,恢复实数化以及逆向换元时破坏了部分对称。
  1. \[Integral](Cos[x]^3+Sin[x]^3)/(1+Sin[x]^4) \[DifferentialD]x//TrigToExp//#/.{x->2ArcTan[u]}/.{Log[X_]:>(X//ExpToTrig//TrigExpand//Factor//{Numerator[#],Denominator[#]}&//(If[MemberQ[Variables[#],u],{Coefficient[#,u,Exponent[#,u]],u/.Solve[#==0,u]//u-#&},{#}]//Flatten//Log//Total)&/@#&//#[[1]]-#[[2]]&//RootReduce/@#&)}&//Collect[#,Log[_],RootReduce]&//Select[#,Variables[#]!={}&]&
复制代码

  1. Log[u+Root[1+4 #1^2+22 #1^4+4 #1^6+#1^8&,2]] Root[25-1088 #1^2+30720 #1^4-163840 #1^6+262144 #1^8&,1]+Log[u+Root[1+4 #1^2+22 #1^4+4 #1^6+#1^8&,1]] Root[25-1088 #1^2+30720 #1^4-163840 #1^6+262144 #1^8&,2]+Log[u+Root[1+4 #1^2+22 #1^4+4 #1^6+#1^8&,4]] Root[25-1088 #1^2+30720 #1^4-163840 #1^6+262144 #1^8&,3]+Log[u+Root[1+4 #1^2+22 #1^4+4 #1^6+#1^8&,3]] Root[25-1088 #1^2+30720 #1^4-163840 #1^6+262144 #1^8&,4]+Log[u+Root[1+4 #1^2+22 #1^4+4 #1^6+#1^8&,7]] Root[25-1088 #1^2+30720 #1^4-163840 #1^6+262144 #1^8&,5]+Log[u+Root[1+4 #1^2+22 #1^4+4 #1^6+#1^8&,8]] Root[25-1088 #1^2+30720 #1^4-163840 #1^6+262144 #1^8&,6]+Log[u+Root[1+4 #1^2+22 #1^4+4 #1^6+#1^8&,5]] Root[25-1088 #1^2+30720 #1^4-163840 #1^6+262144 #1^8&,7]+Log[u+Root[1+4 #1^2+22 #1^4+4 #1^6+#1^8&,6]] Root[25-1088 #1^2+30720 #1^4-163840 #1^6+262144 #1^8&,8]
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-3-29 14:02 , Processed in 0.049406 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表