马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?欢迎注册
×
本帖最后由 .·.·. 于 2018-12-19 19:20 编辑
对一般的k次剩余,如果想验证2是否是素数p=kq+1的k次剩余,只需要检查$2^q mod p$是否为1
而对二次剩余,我们有一个简单的知道对素数$p=1,7 mod 8$,2是$mod p$的二次剩余,而对$p=3,5 mod 8$,2是$mod p$的二次非剩余
想问一下在高次剩余里面有没有类似的结论
简单地试了一下:
http://oeis.org/A014752(所有使得2是素数p的三次剩余的p)
- 19:08:04> a=aa=Vec(0,125);b=bb=Vec(0,64);c=cc=Vec(0,81);forprime(i=3,10000,if(i%3==1,if(1==Mod(2,i)^((i-1)/3),a[i%125]+=1;b[i%64]+=1;c[i%81]+=1,aa[i%125]+=1;bb[i%64]+=1;cc[i%81]+=1)))
- 19:08:52> a
- %108 = [1, 3, 3, 2, 0, 2, 1, 3, 2, 0, 3, 0, 2, 3, 0, 1, 2, 3, 1, 0, 3, 1, 0, 2, 0, 2, 4, 3, 1, 0, 3, 3, 1, 1, 0, 1, 5, 4, 1, 0, 2, 3, 2, 3, 0, 2, 0, 3, 1, 0, 4, 3, 0, 3, 0, 2, 3, 2, 1, 0, 3, 2, 0, 3, 0, 3, 4, 1, 2, 0, 2, 1, 2, 3, 0, 1, 1, 3, 2, 0, 3, 3, 2, 2, 0, 1, 0, 5, 2, 0, 2, 2, 2, 1, 0, 3, 4, 4, 0, 0, 3, 1, 1, 3, 0, 1, 1, 1, 2, 0, 1, 1, 3, 2, 0, 1, 1, 0, 1, 0, 0, 2, 2, 3, 0]
- 19:08:53> aa
- %109 = [3, 4, 3, 6, 0, 4, 5, 3, 3, 0, 4, 5, 3, 3, 0, 3, 2, 3, 7, 0, 5, 5, 3, 0, 0, 3, 4, 2, 5, 0, 3, 6, 4, 5, 0, 5, 3, 2, 6, 0, 3, 1, 6, 4, 0, 3, 8, 4, 4, 0, 3, 3, 6, 4, 0, 6, 3, 6, 3, 0, 5, 4, 6, 2, 0, 3, 4, 4, 3, 0, 5, 4, 5, 5, 0, 6, 5, 2, 6, 0, 3, 3, 2, 5, 0, 3, 4, 3, 3, 0, 4, 7, 4, 6, 0, 3, 2, 2, 4, 0, 4, 3, 6, 2, 0, 4, 6, 7, 4, 0, 4, 6, 4, 4, 0, 5, 5, 6, 5, 0, 8, 2, 6, 4, 0]
- 19:08:54> b
- %110 = [6, 0, 4, 0, 4, 0, 4, 0, 8, 0, 7, 0, 4, 0, 6, 0, 4, 0, 5, 0, 7, 0, 7, 0, 7, 0, 8, 0, 4, 0, 7, 0, 5, 0, 5, 0, 7, 0, 6, 0, 3, 0, 9, 0, 9, 0, 6, 0, 7, 0, 6, 0, 7, 0, 7, 0, 7, 0, 7, 0, 10, 0, 7, 0]
- 19:08:54> bb
- %111 = [13, 0, 13, 0, 16, 0, 17, 0, 13, 0, 12, 0, 13, 0, 18, 0, 11, 0, 14, 0, 10, 0, 8, 0, 12, 0, 14, 0, 12, 0, 13, 0, 12, 0, 13, 0, 14, 0, 14, 0, 13, 0, 10, 0, 10, 0, 12, 0, 11, 0, 15, 0, 17, 0, 13, 0, 11, 0, 13, 0, 13, 0, 11, 0]
- 19:08:55> c
- %112 = [9, 0, 0, 6, 0, 0, 6, 0, 0, 11, 0, 0, 8, 0, 0, 7, 0, 0, 6, 0, 0, 8, 0, 0, 5, 0, 0, 5, 0, 0, 10, 0, 0, 10, 0, 0, 6, 0, 0, 7, 0, 0, 9, 0, 0, 8, 0, 0, 5, 0, 0, 6, 0, 0, 5, 0, 0, 8, 0, 0, 8, 0, 0, 9, 0, 0, 7, 0, 0, 5, 0, 0, 8, 0, 0, 9, 0, 0, 9, 0, 0]
- 19:08:55> cc
- %113 = [16, 0, 0, 17, 0, 0, 15, 0, 0, 17, 0, 0, 13, 0, 0, 15, 0, 0, 17, 0, 0, 17, 0, 0, 16, 0, 0, 19, 0, 0, 11, 0, 0, 13, 0, 0, 13, 0, 0, 16, 0, 0, 16, 0, 0, 13, 0, 0, 20, 0, 0, 13, 0, 0, 16, 0, 0, 16, 0, 0, 16, 0, 0, 9, 0, 0, 17, 0, 0, 18, 0, 0, 16, 0, 0, 11, 0, 0, 15, 0, 0]
复制代码
尝试借助计算机的计算力
- a=aa=Vec(0,125*64*81);forprime(i=3,100000000,if(i%3==1,if(1==Mod(2,i)^((i-1)/3),a[i%(125*64*81)]+=1,aa[i%(125*
- 64*81)]+=1)))
复制代码 然而仍然得不到像二次剩余那样好看的结果
所以我想问一下,高次剩余问题(比如三次剩余)之下,“2是否是p=kq+1的k次剩余”这个判断有没有比较简单的形式 |