数学研发论坛

 找回密码
 欢迎注册
查看: 604|回复: 6

[提问] 和平面图形的面积有关的问题

[复制链接]
发表于 2019-1-31 19:57:55 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有帐号?欢迎注册

x
给定一个平面图形,如果它的面积\(S\)完全依赖于一条线段的长度\(a\),那么是否可以得\(S=ka^2\)?(\(k\)为常数)
这是我从量纲角度弄出来的。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-1-31 20:35:02 | 显示全部楼层
取决于所谓的”完全依赖“怎么定义。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2019-1-31 20:45:42 | 显示全部楼层
hujunhua 发表于 2019-1-31 20:35
取决于所谓的”完全依赖“怎么定义。

就是只有这个长度以及它变化时会影响到的量可能有变化,其他恒定
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-1-31 21:07:02 | 显示全部楼层
直角三角形一条直角边 b 给定,另一条直角边 a 自由伸缩。面积 S 完全依赖于 a, S=ab/2.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2019-1-31 21:15:25 | 显示全部楼层
hujunhua 发表于 2019-1-31 21:07
直角三角形一条直角边 b 给定,另一条直角边 a 自由伸缩。面积 S 完全依赖于 a, S=ab/2.

这个反例很好,我是从量纲角度想的。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-2-1 13:52:49 | 显示全部楼层
还可以非线性,设直角三角形内接于直径为c的定圆,其面积完全依赖于一条直角边a的长度,于是另外一条直角边长度为变量$\sqrt(c^2-a^2)$,面积为$a/2\sqrt(c^2-a^2)$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-2-2 13:36:05 | 显示全部楼层
本帖最后由 只是呼吸 于 2019-2-2 13:54 编辑

圆环的面积也仅仅依赖于一条线段\(a\):(线段\(a\)是外切于圆环内圆,\(a\)的两个端点交于圆环外圆,因为我画不了图,只能描述)

     \(s_{圆环}= \frac{\pi}{4} a^2\)

当圆环的内圆收缩为一个点时,\(a\) 扩大到成为“外圆”的直径,此时:


   \(s_{圆环}=s_{圆}= \frac{\pi}{4} a^2\)


当圆环的内圆扩大,扩大到与圆环的外圆重合,此时圆环的面积为\(0\),相应地,线段\(a\)也收缩为\(0\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2019-8-24 08:04 , Processed in 0.049069 second(s), 16 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表