- 注册时间
- 2021-11-19
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 8865
- 在线时间
- 小时
|
发表于 2023-4-19 10:16:23
|
显示全部楼层
check.pari
- /* for gmp-ecm version 7.x: for parameter sigma = 0:s */
- /* also for gmp-ecm version 6.x: for sigma = s */
- FindGroupOrder(p,s)={
- my(K,v,u,x,b,a,A,E);
- K = Mod(1,p);
- v = K*(4*s);
- u = K*(s^2-5);
- x = u^3;
- b = 4*x*v;
- a = (v-u)^3*(3*u+v);
- A = a/b-2;
- x = x/v^3;
- b = x^3 + A*x^2 + x;
- E = ellinit([0,b*A,0,b^2,0],K);
- return(ellcard(E));
- }
- FindGroupOrderA(p,A)={
- my(K, d, a, b, E);
- K = Mod(1,p);
- d = K*((A+2)/4);
- a = K*(4*d-2);
- b = K*(16*d+2);
- E = ellinit([0,a/b,0,1/b^2,0],K);
- return(ellcard(E));
- }
- /* for parameter sigma = 1:s */
- FindGroupOrderParam1(p,s)={
- return(FindGroupOrderA(p, 4*s^2/2^64-2));
- }
- /* for parameter sigma = 2:s */
- FindGroupOrderParam2(p,s)={
- my(K,E,P,x,y,x3,A);
- K = Mod(1,p);
- E = ellinit([0,36],K);
- [x,y] = ellmul(E, [-3,3], s);
- x3 = (3*x+y+6)/(2*(y-3));
- A = -(3*x3^4+6*x3^2-1)/(4*x3^3);
- return(FindGroupOrderA(p, A));
- }
- /* for parameter sigma = 3:s */
- FindGroupOrderParam3(p,s)={
- return(FindGroupOrderA(p, 4*s/2^32-2));
- }
- FindGroupOrderParam(p, sigma, param) = {
- if (param == 0, return(FindGroupOrder(p, sigma)));
- if (param == 1, return(FindGroupOrderParam1(p, sigma)));
- if (param == 2, return(FindGroupOrderParam2(p, sigma)));
- if (param == 3, return(FindGroupOrderParam3(p, sigma)));
- print("Invalid parametrization: ", param);
- }
- /*
- # check if a prime p is found with bounds B1 and B2,
- # for parameter 'param' and sigma in [sigma_min,sigma_max-1]
- # check_found (31622776601683800097, 11000, 1873422, 0, 1000)
- # check_found (31622776601683800097, 11000, 1873422, 1, 1000)
- # check_found (31622776601683800097, 11000, 1873422, 2, 1000)
- # check_found (31622776601683800097, 11000, 1873422, 3, 1000)
- */
- check_found(p, B1, B2, param, sigma_max) = {
- my(e2=0,e3=0,tries=0,found=0,sigma,f);
- for(sigma=0,sigma_max-1,
- iferr(f = factor(FindGroupOrderParam(p, sigma, param)),
- E, next(), 1);
- f = factor(FindGroupOrderParam(p, sigma, param));
- tries += 1;
- if (f[1,1] != 2,
- print(" * Error 1,1 != 2");
- print("factors = ",f);
- return();
- );
- e2 += f[1,2];
- if (f[2,1] == 3,
- e3 += f[2,2];
- );
- ms=matsize(f)[1];
- if (f[ms-1,1] <= B1 && f[ms,1] <= B2,
- found += 1;
- );
- );
- printf("tries=%d, found=%d, %0.8f %0.8f %0.8f \n",tries,found,1.0*e2/tries,1.0*e3/tries,2.0^(e2/tries)*3.0^(e3/tries));
- }
- /* check all parametrizations 0, 1, 2, 3 */
- check_found_all(p, B1, B2, sigma_max) = {
- for (param=0,3,
- check_found(p,B1,B2,param,sigma_max);
- );
- }
- /*
- sample run:
- check_found_all(31622776601683800097, 11000, 1873422, 1000)
- */
复制代码
https://gitlab.inria.fr/zimmerma ... 4e9852bc269433541c5
Add group order calculation and checking code for Pari/GP, similar to check.sage. |
|