找回密码
 欢迎注册
查看: 25016|回复: 5

[求助] 超级难的级数收敛问题

[复制链接]
发表于 2009-7-11 16:03:35 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
$S_n=\sum_{k=1}^{n}a_k,\sigma_n=\sum_{k=1}^{n}{S_k}/(n+1) $ 对于某个大于0的$alpha$我们有 $\sum_{n=1}^{\infty}{|S_n-sigma_n|^alpha}$收敛 那么有级数 ${a_n}$收敛了 (昨天我写了个“二次积分交换”的题目,这个是非常难的数学分析问题,题目中的函数是有界的,不是连续的,请看清题目,mathe说的方法是在函数是二元连续函数是才能使用的,不相信的话随便找本书看就明白了,一般的情况下根本不能用,我对于被看成笨蛋这个感到无语)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-11 20:12:56 | 显示全部楼层
大家讨论问题,不要进行人身攻击。 我看过你的帖子,没人对你说三道四的; 也许没有仔细看你的题目,不知关键所在, 误以为是个非常浅显的结论, 即便如此,有人肯回复毕竟是件好事, 大家可以将问题进一步讨论下去。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-12 10:32:28 | 显示全部楼层
楼主看来对陶伯理论比较有研究,这两个题目都是这种味道的 没人将你看做笨蛋呀。一个困难问题,要讨论首先要弄明白问题的难点在哪,否则大家云山雾罩,你说你的,我说我的,那就不叫讨论了。 你原来的那个问题,我就是一眼看去,由于水平问题,根本没看出来哪困难,所以才问你的。 楼主要对自己的知识有自信,不要认为别人对你熟悉领域的基础知识都很熟悉。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-18 14:58:36 | 显示全部楼层
引理1: h个正项级数${a_n^{(t)}},1<=t<=h$都收敛,那么级数${root{h}{\prod_{t=1}^ha_n^{(t)}}}$也收敛 这个使用平均不等式容易证明
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-18 15:00:21 | 显示全部楼层
引理2: 级数${|d_n|^a}$收敛,那么级数${\frac{d_n}{n}}$绝对收敛. 这个使用引理1就可以证明
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-18 15:02:27 | 显示全部楼层
然后题目中记$d_n=S_n-\sigma_n$ 可以解得$S_n=a_1+\sum_{k=2}^{n-1}{d_k}/k+{n+1}/n*d_n$ 利用引理2就可以得出结论
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-22 06:17 , Processed in 0.026150 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表