找回密码
 欢迎注册
查看: 78679|回复: 26

[讨论] 平方根的和是否无理数

[复制链接]
发表于 2009-7-30 17:31:48 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
本帖最后由 282842712474 于 2009-7-30 17:33 编辑 $\sqrt{2}+\sqrt{3}$ $\sqrt{2}+\sqrt{3}+\sqrt{5}$ $\sqrt{2}+\sqrt{3}+\sqrt{5}+\sqrt{7}$ 我已经通过自己的方法证明了上述结果都是无理数,但是对于更多项的,比如 $\sqrt{2}+\sqrt{3}+\sqrt{5}+\sqrt{7}+\sqrt{11}+\sqrt{13}+\sqrt{17}+\sqrt{19}$ 能够证明它是无理数吗? (根号内的数不限于素数)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-30 21:47:40 | 显示全部楼层
证明这种具体的平方根和差是否为有理数,有统一的方法 比如以$sqrt(2)+sqrt(3)+sqrt(5)$为例子,我们可以计算多项式 $(x-(sqrt(2)+sqrt(3)+sqrt(5)))(x-(sqrt(2)-sqrt(3)+sqrt(5)))(x-(sqrt(2)+sqrt(3)-sqrt(5)))(x-(sqrt(2)-sqrt(3)-sqrt(5)))*$ $(x-(-sqrt(2)+sqrt(3)+sqrt(5)))(x-(-sqrt(2)-sqrt(3)+sqrt(5)))(x-(-sqrt(2)+sqrt(3)-sqrt(5)))(x-(-sqrt(2)-sqrt(3)-sqrt(5)))$ $=x^8-40*x^6+352*x^4-960*x^2+576$ 现在我们只要证明多项式$x^8-40*x^6+352*x^4-960*x^2+576$没有整数根就可以了.这个只需要将576的所有正负因子代入检验就可以了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-7-30 22:45:37 | 显示全部楼层
不是没有“有理数根”吗?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-31 07:07:02 | 显示全部楼层
这里多项式最高项系数为1,所以有理数根必然为整数根
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-7-31 07:59:31 | 显示全部楼层
本帖最后由 282842712474 于 2009-7-31 08:01 编辑 我想提两个问题: 1、什么软件能够把 $(x-(-sqrt(2)+sqrt(3)+sqrt(5)))(x-(-sqrt(2)-sqrt(3)+sqrt(5)))(x-(-sqrt(2)+sqrt(3)-sqrt(5)))(x-(-sqrt(2)-sqrt(3)-sqrt(5)))*$ $(x-(sqrt(2)+sqrt(3)+sqrt(5)))(x-(sqrt(2)-sqrt(3)+sqrt(5)))(x-(sqrt(2)+sqrt(3)-sqrt(5)))(x-(sqrt(2)-sqrt(3)-sqrt(5)))$计算出来,得到$x^8-40*x^6+352*x^4-960*x^2+576$ 2、难道说$x^2-2=0$没有整数根,就说x是无理数?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-31 08:22:35 | 显示全部楼层
很多软件都可以,我是用maxima 对于第二个问题,的确如此.对于任何最高项系数为1的整系数多项式,有理数根必然是整数根
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-7-31 08:27:45 | 显示全部楼层
本帖最后由 282842712474 于 2009-7-31 08:52 编辑 maxima有什么教程呢?Mathematica可以吗? 能够用$\sqrt{2}+\sqrt{3}+\sqrt{3}$为方程根之一,生成$x^8-40*x^6+352*x^4-960*x^2+576$ 其他的几个根要满足什么样的条件?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-31 09:01:35 | 显示全部楼层
maxima是免费软件,你随意用 你说的是商业软件,自己偷偷用可以,别用来发表论文和商用
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-7-31 09:03:08 | 显示全部楼层
我想,素数的平方根的和应该是无理数
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-7-31 09:04:46 | 显示全部楼层
本帖最后由 282842712474 于 2009-7-31 09:09 编辑 我用过这个商业软件,只不过有点“大炮打蚊子”,大材小用了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-23 00:00 , Processed in 0.023557 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表