找回密码
 欢迎注册
查看: 18868|回复: 3

[提问] 关于微分(㏒b^x)=1/x㏑b的推理过程

[复制链接]
发表于 2009-8-11 16:41:13 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
b^y*㏑b*(dy/dx)=1 dy/dx=1/b^y㏑b=1/x㏑b 看不明白第一个式子里怎么等于1的? log怎么又换成ln了?详细解释一下哈 ^是次方 *是乘号
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-12 08:03:40 | 显示全部楼层
楼主的描述突然冒出个“y”,有点混乱。 正常的推导如下: $d(ln(b^x))=d(xlnb)=ln(b)dx$ 所以,题目中的等式本身就不成立。 至于 log 与 ln 的区别,用高中的换底公式就解决了,它仅影响到一个常数系数而已。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-12 10:58:41 | 显示全部楼层
楼主好像表述的就不正确。 微分(㏒b^x)这个根本就不等于楼主所说的1/x㏑b。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-13 09:53:01 | 显示全部楼层
题目应该是 $y=log_b(x)$ 这样结果正好是$y'=1/{xln(b)}$ 也就是$b^y=x$,两边同时对x求导就是$b^y*ln(b){dy}/{dx}=1$ 不过显然楼主基本概念都没有掌握好,还是重新好好温习一下课本,不然别人是很难帮助你的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-29 10:09 , Processed in 0.024027 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表