- 注册时间
- 2017-12-7
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 3243
- 在线时间
- 小时
|
发表于 2019-8-23 10:31:35
|
显示全部楼层
想明白这个证明是怎么回事了
$gcd(n^17+9,(n+1)^17+9)$
$=gcd(n^17+9,(n+1)^17-n^17)$
$=gcd(n^17+9,1 + 17 n + 136 n^2 + 680 n^3 + 2380 n^4 + 6188 n^5 + 12376 n^6 + 19448 n^7 + 24310 n^8 + 24310 n^9 + 19448 n^10 + 12376 n^11 + 6188 n^12 + 2380 n^13 + 680 n^14 + 136 n^15 + 17 n^16)$
$\le gcd(17*(n^17+9),1 + 17 n + 136 n^2 + 680 n^3 + 2380 n^4 + 6188 n^5 + 12376 n^6 + 19448 n^7 + 24310 n^8 + 24310 n^9 + 19448 n^10 + 12376 n^11 + 6188 n^12 + 2380 n^13 + 680 n^14 + 136 n^15 + 17 n^16)$
$=gcd(153 - n - 17 n^2 - 136 n^3 - 680 n^4 - 2380 n^5 - 6188 n^6 - 12376 n^7 - 19448 n^8 - 24310 n^9 - 24310 n^10 - 19448 n^11 - 12376 n^12 - 6188 n^13 - 2380 n^14 - 680 n^15 - 136 n^16,1 + 17 n + 136 n^2 + 680 n^3 + 2380 n^4 + 6188 n^5 + 12376 n^6 + 19448 n^7 + 24310 n^8 + 24310 n^9 + 19448 n^10 + 12376 n^11 + 6188 n^12 + 2380 n^13 + 680 n^14 + 136 n^15 + 17 n^16)$
通过类似这样的辗转相除,我们可以把两个17次的表达式换成两个16次的表达式(需要注意的是,这里有一处不等号需要验证)
通过十几次辗转相除,我们可以得到$gcd(an+b,c)$这样的形式(以及十几个需要验证的$\le$)
注意到每一次放缩的结果都是,新gcd大于原gcd,也就是我们得到的是一个必要条件,所以我们只需要验证得到的n代入原式得到的gcd是否大于1。
至于思路
应该是看到最大公约数直接想到辗转相除吧 |
|