本帖最后由 dlpg070 于 2019-11-23 10:39 编辑
回复王守恩
用最笨方法,画图验证王守恩给出的数列是正确的
{1,3,16,125,1296}
图形演示时,为了清晰,各岛采用环形布局,
希望见到理论证明
下面给出部分数据图片,供欣赏
n=2全联通的方案数1
图片文件 2岛1桥.png
2岛1桥
1 1 {{1,2}}
n=3全联通的方案数3
图片文件 3岛2桥.png
1 1 {{1,2},{1,3}}
2 2 {{1,2},{2,3}}
3 3 {{1,3},{2,3}}
n=4全联通的方案数16
图片文件 4岛3桥.png
1 1 {{1,2},{1,3},{1,4}}
2 3 {{1,2},{1,3},{2,4}}
3 4 {{1,2},{1,3},{3,4}}
4 5 {{1,2},{1,4},{2,3}}
5 7 {{1,2},{1,4},{3,4}}
6 8 {{1,2},{2,3},{2,4}}
7 9 {{1,2},{2,3},{3,4}}
8 10 {{1,2},{2,4},{3,4}}
9 11 {{1,3},{1,4},{2,3}}
10 12 {{1,3},{1,4},{2,4}}
11 14 {{1,3},{2,3},{2,4}}
12 15 {{1,3},{2,3},{3,4}}
13 16 {{1,3},{2,4},{3,4}}
14 17 {{1,4},{2,3},{2,4}}
15 18 {{1,4},{2,3},{3,4}}
16 19 {{1,4},{2,4},{3,4}}
n=5全联通的方案数125
图片文件 5岛4桥.png(前50)
1 1 {{1,2},{1,3},{1,4},{1,5}}
2 4 {{1,2},{1,3},{1,4},{2,5}}
3 6 {{1,2},{1,3},{1,4},{3,5}}
4 7 {{1,2},{1,3},{1,4},{4,5}}
5 9 {{1,2},{1,3},{1,5},{2,4}}
6 11 {{1,2},{1,3},{1,5},{3,4}}
7 13 {{1,2},{1,3},{1,5},{4,5}}
8 19 {{1,2},{1,3},{2,4},{2,5}}
9 21 {{1,2},{1,3},{2,4},{3,5}}
10 22 {{1,2},{1,3},{2,4},{4,5}}
11 23 {{1,2},{1,3},{2,5},{3,4}}
12 25 {{1,2},{1,3},{2,5},{4,5}}
13 26 {{1,2},{1,3},{3,4},{3,5}}
14 27 {{1,2},{1,3},{3,4},{4,5}}
15 28 {{1,2},{1,3},{3,5},{4,5}}
16 29 {{1,2},{1,4},{1,5},{2,3}}
17 32 {{1,2},{1,4},{1,5},{3,4}}
18 33 {{1,2},{1,4},{1,5},{3,5}}
19 36 {{1,2},{1,4},{2,3},{2,5}}
20 38 {{1,2},{1,4},{2,3},{3,5}}
21 39 {{1,2},{1,4},{2,3},{4,5}}
22 44 {{1,2},{1,4},{2,5},{3,4}}
23 45 {{1,2},{1,4},{2,5},{3,5}}
24 47 {{1,2},{1,4},{3,4},{3,5}}
25 48 {{1,2},{1,4},{3,4},{4,5}}
26 49 {{1,2},{1,4},{3,5},{4,5}}
27 50 {{1,2},{1,5},{2,3},{2,4}}
28 52 {{1,2},{1,5},{2,3},{3,4}}
29 54 {{1,2},{1,5},{2,3},{4,5}}
30 56 {{1,2},{1,5},{2,4},{3,4}}
31 57 {{1,2},{1,5},{2,4},{3,5}}
32 62 {{1,2},{1,5},{3,4},{3,5}}
33 63 {{1,2},{1,5},{3,4},{4,5}}
34 64 {{1,2},{1,5},{3,5},{4,5}}
35 65 {{1,2},{2,3},{2,4},{2,5}}
36 67 {{1,2},{2,3},{2,4},{3,5}}
37 68 {{1,2},{2,3},{2,4},{4,5}}
38 69 {{1,2},{2,3},{2,5},{3,4}}
39 71 {{1,2},{2,3},{2,5},{4,5}}
40 72 {{1,2},{2,3},{3,4},{3,5}}
41 73 {{1,2},{2,3},{3,4},{4,5}}
42 74 {{1,2},{2,3},{3,5},{4,5}}
43 75 {{1,2},{2,4},{2,5},{3,4}}
44 76 {{1,2},{2,4},{2,5},{3,5}}
45 78 {{1,2},{2,4},{3,4},{3,5}}
46 79 {{1,2},{2,4},{3,4},{4,5}}
47 80 {{1,2},{2,4},{3,5},{4,5}}
48 81 {{1,2},{2,5},{3,4},{3,5}}
49 82 {{1,2},{2,5},{3,4},{4,5}}
50 83 {{1,2},{2,5},{3,5},{4,5}}
51 85 {{1,3},{1,4},{1,5},{2,3}}
52 86 {{1,3},{1,4},{1,5},{2,4}}
53 87 {{1,3},{1,4},{1,5},{2,5}}
54 92 {{1,3},{1,4},{2,3},{2,5}}
55 94 {{1,3},{1,4},{2,3},{3,5}}
56 95 {{1,3},{1,4},{2,3},{4,5}}
57 96 {{1,3},{1,4},{2,4},{2,5}}
58 98 {{1,3},{1,4},{2,4},{3,5}}
59 99 {{1,3},{1,4},{2,4},{4,5}}
60 101 {{1,3},{1,4},{2,5},{3,5}}
61 102 {{1,3},{1,4},{2,5},{4,5}}
62 106 {{1,3},{1,5},{2,3},{2,4}}
63 108 {{1,3},{1,5},{2,3},{3,4}}
64 110 {{1,3},{1,5},{2,3},{4,5}}
65 111 {{1,3},{1,5},{2,4},{2,5}}
66 112 {{1,3},{1,5},{2,4},{3,4}}
67 114 {{1,3},{1,5},{2,4},{4,5}}
68 115 {{1,3},{1,5},{2,5},{3,4}}
69 117 {{1,3},{1,5},{2,5},{4,5}}
70 121 {{1,3},{2,3},{2,4},{2,5}}
71 123 {{1,3},{2,3},{2,4},{3,5}}
72 124 {{1,3},{2,3},{2,4},{4,5}}
73 125 {{1,3},{2,3},{2,5},{3,4}}
74 127 {{1,3},{2,3},{2,5},{4,5}}
75 128 {{1,3},{2,3},{3,4},{3,5}}
76 129 {{1,3},{2,3},{3,4},{4,5}}
77 130 {{1,3},{2,3},{3,5},{4,5}}
78 131 {{1,3},{2,4},{2,5},{3,4}}
79 132 {{1,3},{2,4},{2,5},{3,5}}
80 134 {{1,3},{2,4},{3,4},{3,5}}
81 135 {{1,3},{2,4},{3,4},{4,5}}
82 136 {{1,3},{2,4},{3,5},{4,5}}
83 137 {{1,3},{2,5},{3,4},{3,5}}
84 138 {{1,3},{2,5},{3,4},{4,5}}
85 139 {{1,3},{2,5},{3,5},{4,5}}
86 141 {{1,4},{1,5},{2,3},{2,4}}
87 142 {{1,4},{1,5},{2,3},{2,5}}
88 143 {{1,4},{1,5},{2,3},{3,4}}
89 144 {{1,4},{1,5},{2,3},{3,5}}
90 147 {{1,4},{1,5},{2,4},{3,4}}
91 148 {{1,4},{1,5},{2,4},{3,5}}
92 150 {{1,4},{1,5},{2,5},{3,4}}
93 151 {{1,4},{1,5},{2,5},{3,5}}
94 156 {{1,4},{2,3},{2,4},{2,5}}
95 158 {{1,4},{2,3},{2,4},{3,5}}
96 159 {{1,4},{2,3},{2,4},{4,5}}
97 160 {{1,4},{2,3},{2,5},{3,4}}
98 162 {{1,4},{2,3},{2,5},{4,5}}
99 163 {{1,4},{2,3},{3,4},{3,5}}
100 164 {{1,4},{2,3},{3,4},{4,5}}
101 165 {{1,4},{2,3},{3,5},{4,5}}
102 166 {{1,4},{2,4},{2,5},{3,4}}
103 167 {{1,4},{2,4},{2,5},{3,5}}
104 169 {{1,4},{2,4},{3,4},{3,5}}
105 170 {{1,4},{2,4},{3,4},{4,5}}
106 171 {{1,4},{2,4},{3,5},{4,5}}
107 172 {{1,4},{2,5},{3,4},{3,5}}
108 173 {{1,4},{2,5},{3,4},{4,5}}
109 174 {{1,4},{2,5},{3,5},{4,5}}
110 176 {{1,5},{2,3},{2,4},{2,5}}
111 178 {{1,5},{2,3},{2,4},{3,5}}
112 179 {{1,5},{2,3},{2,4},{4,5}}
113 180 {{1,5},{2,3},{2,5},{3,4}}
114 182 {{1,5},{2,3},{2,5},{4,5}}
115 183 {{1,5},{2,3},{3,4},{3,5}}
116 184 {{1,5},{2,3},{3,4},{4,5}}
117 185 {{1,5},{2,3},{3,5},{4,5}}
118 186 {{1,5},{2,4},{2,5},{3,4}}
119 187 {{1,5},{2,4},{2,5},{3,5}}
120 189 {{1,5},{2,4},{3,4},{3,5}}
121 190 {{1,5},{2,4},{3,4},{4,5}}
122 191 {{1,5},{2,4},{3,5},{4,5}}
123 192 {{1,5},{2,5},{3,4},{3,5}}
124 193 {{1,5},{2,5},{3,4},{4,5}}
125 194 {{1,5},{2,5},{3,5},{4,5}}
n=6全联通的方案数1296
图片文件 6岛5桥.png(前50)
1 1 {{1,2},{1,3},{1,4},{1,5},{1,6}}
2 5 {{1,2},{1,3},{1,4},{1,5},{2,6}}
3 8 {{1,2},{1,3},{1,4},{1,5},{3,6}}
4 10 {{1,2},{1,3},{1,4},{1,5},{4,6}}
5 11 {{1,2},{1,3},{1,4},{1,5},{5,6}}
6 14 {{1,2},{1,3},{1,4},{1,6},{2,5}}
7 17 {{1,2},{1,3},{1,4},{1,6},{3,5}}
8 19 {{1,2},{1,3},{1,4},{1,6},{4,5}}
9 21 {{1,2},{1,3},{1,4},{1,6},{5,6}}
10 39 {{1,2},{1,3},{1,4},{2,5},{2,6}}
11 42 {{1,2},{1,3},{1,4},{2,5},{3,6}}
12 44 {{1,2},{1,3},{1,4},{2,5},{4,6}}
13 45 {{1,2},{1,3},{1,4},{2,5},{5,6}}
14 47 {{1,2},{1,3},{1,4},{2,6},{3,5}}
15 49 {{1,2},{1,3},{1,4},{2,6},{4,5}}
16 51 {{1,2},{1,3},{1,4},{2,6},{5,6}}
17 57 {{1,2},{1,3},{1,4},{3,5},{3,6}}
18 59 {{1,2},{1,3},{1,4},{3,5},{4,6}}
19 60 {{1,2},{1,3},{1,4},{3,5},{5,6}}
20 61 {{1,2},{1,3},{1,4},{3,6},{4,5}}
21 63 {{1,2},{1,3},{1,4},{3,6},{5,6}}
22 64 {{1,2},{1,3},{1,4},{4,5},{4,6}}
23 65 {{1,2},{1,3},{1,4},{4,5},{5,6}}
24 66 {{1,2},{1,3},{1,4},{4,6},{5,6}}
25 68 {{1,2},{1,3},{1,5},{1,6},{2,4}}
26 71 {{1,2},{1,3},{1,5},{1,6},{3,4}}
27 74 {{1,2},{1,3},{1,5},{1,6},{4,5}}
28 75 {{1,2},{1,3},{1,5},{1,6},{4,6}}
29 87 {{1,2},{1,3},{1,5},{2,4},{2,6}}
30 90 {{1,2},{1,3},{1,5},{2,4},{3,6}}
31 92 {{1,2},{1,3},{1,5},{2,4},{4,6}}
32 93 {{1,2},{1,3},{1,5},{2,4},{5,6}}
33 101 {{1,2},{1,3},{1,5},{2,6},{3,4}}
34 104 {{1,2},{1,3},{1,5},{2,6},{4,5}}
35 105 {{1,2},{1,3},{1,5},{2,6},{4,6}}
36 108 {{1,2},{1,3},{1,5},{3,4},{3,6}}
37 110 {{1,2},{1,3},{1,5},{3,4},{4,6}}
38 111 {{1,2},{1,3},{1,5},{3,4},{5,6}}
39 116 {{1,2},{1,3},{1,5},{3,6},{4,5}}
40 117 {{1,2},{1,3},{1,5},{3,6},{4,6}}
41 119 {{1,2},{1,3},{1,5},{4,5},{4,6}}
42 120 {{1,2},{1,3},{1,5},{4,5},{5,6}}
43 121 {{1,2},{1,3},{1,5},{4,6},{5,6}}
44 131 {{1,2},{1,3},{1,6},{2,4},{2,5}}
45 134 {{1,2},{1,3},{1,6},{2,4},{3,5}}
46 136 {{1,2},{1,3},{1,6},{2,4},{4,5}}
47 138 {{1,2},{1,3},{1,6},{2,4},{5,6}}
48 140 {{1,2},{1,3},{1,6},{2,5},{3,4}}
49 143 {{1,2},{1,3},{1,6},{2,5},{4,5}}
50 144 {{1,2},{1,3},{1,6},{2,5},{4,6}}
51 152 {{1,2},{1,3},{1,6},{3,4},{3,5}}
52 154 {{1,2},{1,3},{1,6},{3,4},{4,5}}
53 156 {{1,2},{1,3},{1,6},{3,4},{5,6}}
54 158 {{1,2},{1,3},{1,6},{3,5},{4,5}}
55 159 {{1,2},{1,3},{1,6},{3,5},{4,6}}
56 164 {{1,2},{1,3},{1,6},{4,5},{4,6}}
57 165 {{1,2},{1,3},{1,6},{4,5},{5,6}}
58 166 {{1,2},{1,3},{1,6},{4,6},{5,6}}
59 203 {{1,2},{1,3},{2,4},{2,5},{2,6}}
60 206 {{1,2},{1,3},{2,4},{2,5},{3,6}}
61 208 {{1,2},{1,3},{2,4},{2,5},{4,6}}
62 209 {{1,2},{1,3},{2,4},{2,5},{5,6}}
63 211 {{1,2},{1,3},{2,4},{2,6},{3,5}}
64 213 {{1,2},{1,3},{2,4},{2,6},{4,5}}
65 215 {{1,2},{1,3},{2,4},{2,6},{5,6}}
66 221 {{1,2},{1,3},{2,4},{3,5},{3,6}}
67 223 {{1,2},{1,3},{2,4},{3,5},{4,6}}
68 224 {{1,2},{1,3},{2,4},{3,5},{5,6}}
69 225 {{1,2},{1,3},{2,4},{3,6},{4,5}}
70 227 {{1,2},{1,3},{2,4},{3,6},{5,6}}
71 228 {{1,2},{1,3},{2,4},{4,5},{4,6}}
72 229 {{1,2},{1,3},{2,4},{4,5},{5,6}}
73 230 {{1,2},{1,3},{2,4},{4,6},{5,6}}
74 231 {{1,2},{1,3},{2,5},{2,6},{3,4}}
75 234 {{1,2},{1,3},{2,5},{2,6},{4,5}}
76 235 {{1,2},{1,3},{2,5},{2,6},{4,6}}
77 238 {{1,2},{1,3},{2,5},{3,4},{3,6}}
78 240 {{1,2},{1,3},{2,5},{3,4},{4,6}}
79 241 {{1,2},{1,3},{2,5},{3,4},{5,6}}
80 246 {{1,2},{1,3},{2,5},{3,6},{4,5}}
81 247 {{1,2},{1,3},{2,5},{3,6},{4,6}}
82 249 {{1,2},{1,3},{2,5},{4,5},{4,6}}
83 250 {{1,2},{1,3},{2,5},{4,5},{5,6}}
84 251 {{1,2},{1,3},{2,5},{4,6},{5,6}}
85 252 {{1,2},{1,3},{2,6},{3,4},{3,5}}
86 254 {{1,2},{1,3},{2,6},{3,4},{4,5}}
87 256 {{1,2},{1,3},{2,6},{3,4},{5,6}}
88 258 {{1,2},{1,3},{2,6},{3,5},{4,5}}
89 259 {{1,2},{1,3},{2,6},{3,5},{4,6}}
90 264 {{1,2},{1,3},{2,6},{4,5},{4,6}}
91 265 {{1,2},{1,3},{2,6},{4,5},{5,6}}
92 266 {{1,2},{1,3},{2,6},{4,6},{5,6}}
93 267 {{1,2},{1,3},{3,4},{3,5},{3,6}}
94 269 {{1,2},{1,3},{3,4},{3,5},{4,6}}
95 270 {{1,2},{1,3},{3,4},{3,5},{5,6}}
96 271 {{1,2},{1,3},{3,4},{3,6},{4,5}}
97 273 {{1,2},{1,3},{3,4},{3,6},{5,6}}
98 274 {{1,2},{1,3},{3,4},{4,5},{4,6}}
99 275 {{1,2},{1,3},{3,4},{4,5},{5,6}}
100 276 {{1,2},{1,3},{3,4},{4,6},{5,6}}
------
1290 2728 {{1,6},{2,6},{3,5},{3,6},{4,6}}
1291 2730 {{1,6},{2,6},{3,5},{4,5},{4,6}}
1292 2731 {{1,6},{2,6},{3,5},{4,5},{5,6}}
1293 2732 {{1,6},{2,6},{3,5},{4,6},{5,6}}
1294 2733 {{1,6},{2,6},{3,6},{4,5},{4,6}}
1295 2734 {{1,6},{2,6},{3,6},{4,5},{5,6}}
1296 2735 {{1,6},{2,6},{3,6},{4,6},{5,6}}
|