| 
注册时间2010-4-21最后登录1970-1-1威望 星金币 枚贡献 分经验 点鲜花 朵魅力 点上传 次下载 次积分7302在线时间 小时 
 | 
 
 楼主|
发表于 2020-1-8 11:45:33
|
显示全部楼层 
| 本帖最后由 chyanog 于 2020-1-8 12:25 编辑 
 
   如图所示,O是△ABC的内心,令
 $u=\sqrt{\frac{b c (-a+b+c)}{a+b+c}},v=\sqrt{\frac{a c (a-b+c)}{a+b+c}},w=\sqrt{\frac{a b (a+b-c)}{a+b+c}}$
 $S=2 \left(x_1 \left(y_2-y_3\right)+x_2 \left(y_3-y_1\right)+x_3 \left(y_1-y_2\right)\right)$
 $T=2 \text{sgn}(S) \sqrt{\left(a^2-(v-w)^2\right) \left((u+w)^2-b^2\right) \left((u+v)^2-c^2\right)}$
 $\S_1=S \left(a^2-(v-w)^2\right) \left(a^2-b^2-c^2+2 (u+v) (u+w)\right)+T \left(a^2 (2 u+v+w)+b^2 (v-w)+c^2 (w-v)\right)$
 $S_2=S \left((u+w)^2-b^2\right) \left(a^2-b^2+c^2-2 (u+v) (v-w)\right)+T \left(-a^2 (u+w)+b^2 (-u-2 v+w)+c^2 (u+w)\right)$
 $S_3=S \left((u+v)^2-c^2\right) \left(a^2+b^2-c^2+2 (v-w) (u+w)\right)+T \left(-a^2 (u+v)+b^2 (u+v)+c^2 (-u+v-2 w)\right)$
 则X点的坐标可以表示为:
 $  ( \frac{S_1 x_1+S_2 x_2+S_3 x_3}{S_1+S_2+S_3},\frac{S_1 y_1+S_2 y_2+S_3 y_3}{S_1+S_2+S_3} ) $
 轮换可得YZ的坐标。上面的式子具有一定几何意义,S表示△ABC有向面积的4倍,$S_1:S_2:S_3\text{=}S_{\text{△XBC}}:S_{\text{△XCA}}:S_{\text{△XAB}}$,T的含义还不清楚,使用几何意义说不定可以进一步简化。
 Mathematica检验代码:
 
 复制代码Clear["`*"];
ellipse[F1_, F2_, P_] :=
  With[{ff = Norm[F1 - F2], p = Norm[P - F1], q = Norm[P - F2]},
   Rotate[Circle[(F1 + F2)/2, {(p + q)/2 , Sqrt[(p + q)^2 - ff^2]/2 }], ArcTan @@ (F1 - F2)]];
intersectionPoint[A : {x1_, y1_}, B : {x2_, y2_}, C : {x3_, y3_}] :=
  Module[{a, b, c, u, v, w, S1, S2, S3, S, T},
   {a, b, c} = {Norm[B - C], Norm[C - A], Norm[A - B]};
   {u, v, w} = {Sqrt[(b c (-a + b + c))/(a + b + c)], Sqrt[( a c (a - b + c))/(a + b + c)], Sqrt[(a b (a + b - c))/( a + b + c)]};
   S = 2 (x3 (y1 - y2) + x1 (y2 - y3) + x2 (-y1 + y3));
   T = 2 Sign[S] Sqrt[((u + v)^2 - c^2) (a^2 - (v - w)^2) ((u + w)^2 - b^2)];
   S1 = S (a^2 - (v - w)^2) (a^2 - b^2 - c^2 + 2 (u + v) (u + w)) + T (a^2 (2 u + v + w) + b^2 (v - w) + c^2 (-v + w)); 
   S2 = S (-b^2 + (u + w)^2) (a^2 - b^2 + c^2 - 2 (u + v) (v - w)) +  T (-a^2 (u + w) + c^2 (u + w) + b^2 (-u - 2 v + w)); 
   S3 = S (-c^2 + (u + v)^2) (a^2 + b^2 - c^2 + 2 (v - w) (u + w)) + T (-a^2 (u + v) + b^2 (u + v) + c^2 (-u + v - 2 w));
   {S1 x1 + S2 x2 + S3 x3, S1 y1 + S2 y2 + S3 y3}/(S1 + S2 + S3)
   ];
Manipulate[
 Module[{A1, B1, C1, O1, X, Y, Z, eq1, eq2, eq3},
  {B1, C1, A1} = pt; O1 = First@Insphere[pt];
  {Y, Z, X} = intersectionPoint @@@ {{B1, C1, A1}, {C1, A1, B1}, {A1, B1, C1}};
  Graphics[{{EdgeForm[Black], Opacity[0.05], Polygon[pt]}, 
    PointSize[Large], Point[O1], Point[{X, Y, Z}],
    {Orange, ellipse @@@ {{A1, B1, O1}, {B1, C1, O1}, {C1, A1, O1}}}, 
    {Blue, InfiniteLine /@ {{A1, X}, {B1, Y}, {C1, Z}}},
    {Red, RegionIntersection[InfiniteLine /@ {{A1, X}, {B1, Y}}]},
    {MapThread[{Blue, Disk[#1, 0.28],  Text[Style[#2, White], #1]} &, {{A1, B1, C1}, {"A", "B",  "C"} }],
     MapThread[{RGBColor[{0, 0.5, 1}], Disk[#1, 0.28], Text[Style[#2, White], #1]} &, {{O1, X, Y, Z}, {"O", "X", "Y", "Z"} }]}
    }, PlotRange -> 10, ImageSize -> 720, BaseStyle -> 14, Axes -> 0
   ]
  ], {{pt, N@{{-5, -5}, {6, -4}, {0, 3.5}}}, Locator, Appearance -> ""}, TrackedSymbols :> {pt}
 ]
 | 
 |