找回密码
 欢迎注册
楼主: 葡萄糖

[讨论] 整海伦三角形的个数问题

[复制链接]
发表于 2023-12-4 09:42:17 | 显示全部楼层
  1. Clear["Global`*"];(*清除所有变量*)
  2. aaa=Table[2k-1,{k,1,50}];(*产生前50奇数*)
  3. bbb=Tuples[aaa,2];(*得到二元数对*)
  4. ccc=Select[bbb,#[[1]]>#[[2]]&];(*第一个元素大于第二个*)
  5. ddd={#1*#2,(#1^2-#2^2)/2,(#1^2+#2^2)/2}&@@@ccc;(*得到勾股数租*)
  6. eee=Select[ddd,And[#[[1]]<100,#[[2]]<100,#[[3]]<100]&](*选择三边都小于100的勾股数*)
复制代码


\[\begin{array}{ccc}
3 & 4 & 5 \\
5 & 12 & 13 \\
15 & 8 & 17 \\
7 & 24 & 25 \\
21 & 20 & 29 \\
35 & 12 & 37 \\
9 & 40 & 41 \\
27 & 36 & 45 \\
45 & 28 & 53 \\
63 & 16 & 65 \\
11 & 60 & 61 \\
33 & 56 & 65 \\
55 & 48 & 73 \\
77 & 36 & 85 \\
13 & 84 & 85 \\
39 & 80 & 89 \\
65 & 72 & 97 \\
\end{array}\]

点评

nyy
这个是勾股数租  发表于 2023-12-4 10:00
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-12-4 10:00:36 | 显示全部楼层
  1. Clear["Global`*"];(*清除所有变量*)
  2. (*子函数,海伦公式,利用海伦公式计算三角形的面积*)
  3. heron[a_,b_,c_]:=Module[{p=(a+b+c)/2},Sqrt[p*(p-a)*(p-b)*(p-c)]]
  4. aaa=Table[k,{k,1,99}];(*产生前99个数*)
  5. bbb2=Tuples[aaa,3];(*得到三元数组*)
  6. bbb=Select[bbb2,And[#[[1]]<=#[[2]],#[[1]]<=#[[3]],#[[2]]<=#[[3]]]&];(*选择递增的*)
  7. ccc=Select[bbb,And[GCD@@#==1,(heron@@#)^2>0]&];(*选择互质,且面积大于零的*)
  8. ddd=Select[ccc,IntegerQ[heron@@#]&](*选择面积为整数的*)
  9. eee=Append[#,heron@@#]&/@ddd
  10. Grid[eee,Alignment->Left](*列表显示*)
复制代码


\[\begin{array}{cccc}
3 & 4 & 5 & 6 \\
3 & 25 & 26 & 36 \\
4 & 13 & 15 & 24 \\
4 & 51 & 53 & 90 \\
5 & 5 & 6 & 12 \\
5 & 5 & 8 & 12 \\
5 & 12 & 13 & 30 \\
5 & 29 & 30 & 72 \\
5 & 51 & 52 & 126 \\
6 & 25 & 29 & 60 \\
7 & 15 & 20 & 42 \\
7 & 24 & 25 & 84 \\
7 & 65 & 68 & 210 \\
8 & 15 & 17 & 60 \\
8 & 29 & 35 & 84 \\
9 & 10 & 17 & 36 \\
9 & 40 & 41 & 180 \\
9 & 65 & 70 & 252 \\
9 & 73 & 80 & 216 \\
10 & 13 & 13 & 60 \\
10 & 17 & 21 & 84 \\
10 & 35 & 39 & 168 \\
11 & 13 & 20 & 66 \\
11 & 25 & 30 & 132 \\
11 & 60 & 61 & 330 \\
11 & 90 & 97 & 396 \\
12 & 17 & 25 & 90 \\
12 & 35 & 37 & 210 \\
12 & 55 & 65 & 198 \\
13 & 13 & 24 & 60 \\
13 & 14 & 15 & 84 \\
13 & 20 & 21 & 126 \\
13 & 30 & 37 & 180 \\
13 & 37 & 40 & 240 \\
13 & 40 & 45 & 252 \\
13 & 40 & 51 & 156 \\
13 & 68 & 75 & 390 \\
13 & 84 & 85 & 546 \\
14 & 25 & 25 & 168 \\
14 & 61 & 65 & 420 \\
15 & 26 & 37 & 156 \\
15 & 28 & 41 & 126 \\
15 & 34 & 35 & 252 \\
15 & 37 & 44 & 264 \\
15 & 41 & 52 & 234 \\
15 & 52 & 61 & 336 \\
16 & 17 & 17 & 120 \\
16 & 25 & 39 & 120 \\
16 & 63 & 65 & 504 \\
17 & 17 & 30 & 120 \\
17 & 25 & 26 & 204 \\
17 & 25 & 28 & 210 \\
17 & 28 & 39 & 210 \\
17 & 39 & 44 & 330 \\
17 & 40 & 41 & 336 \\
17 & 55 & 60 & 462 \\
17 & 65 & 80 & 288 \\
17 & 89 & 90 & 756 \\
18 & 41 & 41 & 360 \\
19 & 20 & 37 & 114 \\
19 & 60 & 73 & 456 \\
20 & 21 & 29 & 210 \\
20 & 37 & 51 & 306 \\
20 & 51 & 65 & 408 \\
20 & 53 & 55 & 528 \\
21 & 41 & 50 & 420 \\
21 & 61 & 68 & 630 \\
21 & 82 & 89 & 840 \\
22 & 61 & 61 & 660 \\
22 & 85 & 91 & 924 \\
24 & 35 & 53 & 336 \\
24 & 37 & 37 & 420 \\
25 & 25 & 48 & 168 \\
25 & 29 & 36 & 360 \\
25 & 33 & 52 & 330 \\
25 & 34 & 39 & 420 \\
25 & 38 & 51 & 456 \\
25 & 39 & 40 & 468 \\
25 & 39 & 56 & 420 \\
25 & 51 & 52 & 624 \\
25 & 51 & 74 & 300 \\
25 & 52 & 63 & 630 \\
25 & 63 & 74 & 756 \\
25 & 74 & 77 & 924 \\
26 & 35 & 51 & 420 \\
26 & 51 & 55 & 660 \\
26 & 51 & 73 & 420 \\
26 & 73 & 97 & 420 \\
26 & 75 & 91 & 840 \\
26 & 85 & 85 & 1092 \\
27 & 29 & 52 & 270 \\
28 & 45 & 53 & 630 \\
28 & 65 & 89 & 546 \\
29 & 29 & 40 & 420 \\
29 & 29 & 42 & 420 \\
29 & 35 & 48 & 504 \\
29 & 52 & 69 & 690 \\
29 & 52 & 75 & 546 \\
29 & 60 & 85 & 522 \\
29 & 65 & 68 & 936 \\
29 & 75 & 92 & 966 \\
31 & 68 & 87 & 930 \\
32 & 53 & 75 & 720 \\
32 & 65 & 65 & 1008 \\
33 & 34 & 65 & 264 \\
33 & 41 & 58 & 660 \\
33 & 56 & 65 & 924 \\
33 & 58 & 85 & 660 \\
34 & 55 & 87 & 396 \\
34 & 61 & 75 & 1020 \\
34 & 65 & 93 & 744 \\
35 & 44 & 75 & 462 \\
35 & 52 & 73 & 840 \\
35 & 53 & 66 & 924 \\
35 & 65 & 82 & 1092 \\
35 & 78 & 97 & 1260 \\
36 & 61 & 65 & 1080 \\
36 & 77 & 85 & 1386 \\
37 & 37 & 70 & 420 \\
37 & 39 & 52 & 720 \\
37 & 72 & 91 & 1260 \\
37 & 91 & 96 & 1680 \\
38 & 65 & 87 & 1140 \\
39 & 41 & 50 & 780 \\
39 & 55 & 82 & 924 \\
39 & 58 & 95 & 456 \\
39 & 62 & 85 & 1116 \\
39 & 80 & 89 & 1560 \\
39 & 85 & 92 & 1656 \\
40 & 51 & 77 & 924 \\
41 & 41 & 80 & 360 \\
41 & 50 & 73 & 984 \\
41 & 50 & 89 & 420 \\
41 & 51 & 58 & 1020 \\
41 & 60 & 95 & 798 \\
41 & 66 & 85 & 1320 \\
41 & 84 & 85 & 1680 \\
43 & 61 & 68 & 1290 \\
44 & 65 & 87 & 1386 \\
44 & 75 & 97 & 1584 \\
48 & 55 & 73 & 1320 \\
48 & 85 & 91 & 2016 \\
50 & 69 & 73 & 1656 \\
51 & 52 & 53 & 1170 \\
51 & 52 & 97 & 840 \\
52 & 61 & 87 & 1560 \\
52 & 73 & 75 & 1800 \\
53 & 53 & 56 & 1260 \\
53 & 53 & 90 & 1260 \\
53 & 75 & 88 & 1980 \\
56 & 61 & 75 & 1680 \\
57 & 65 & 68 & 1710 \\
57 & 82 & 89 & 2280 \\
60 & 73 & 91 & 2184 \\
61 & 74 & 87 & 2220 \\
65 & 65 & 66 & 1848 \\
65 & 72 & 97 & 2340 \\
65 & 76 & 87 & 2394 \\
65 & 87 & 88 & 2640 \\
68 & 75 & 77 & 2310 \\
68 & 87 & 95 & 2850 \\
72 & 85 & 85 & 2772 \\
73 & 73 & 96 & 2640 \\
75 & 86 & 97 & 3096 \\
78 & 89 & 89 & 3120 \\
78 & 95 & 97 & 3420 \\
\end{array}\]

点评

nyy
除了穷举法,似乎没更好的办法  发表于 2023-12-4 10:01
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-12-6 09:59:28 | 显示全部楼层
  1. (*边长均小于100的整边非本原海伦三角形一共有多少个呢?*)
  2. Clear["Global`*"];(*清除所有变量*)
  3. (*子函数,海伦公式,利用海伦公式计算三角形的面积*)
  4. heron[a_,b_,c_]:=Module[{p=(a+b+c)/2},Sqrt[p*(p-a)*(p-b)*(p-c)]]
  5. aaa=Table[k,{k,1,99}];(*产生前99个数*)
  6. bbb2=Tuples[aaa,3];(*得到三元数组*)
  7. bbb=Select[bbb2,And[#[[1]]<=#[[2]],#[[2]]<=#[[3]]]&];(*选择递增的*)
  8. ccc=Select[bbb,And[(heron@@#)^2>0]&];(*选择面积平方大于零的*)
  9. ddd=Select[ccc,IntegerQ[heron@@#]&];(*选择面积为整数的*)
  10. eee=Append[#,heron@@#]&/@ddd (*增加面积*)
  11. Dimensions[eee](*计算维度*)
复制代码



输出结果:
  1. {{3,4,5,6},{3,25,26,36},{4,13,15,24},{4,51,53,90},{5,5,6,12},{5,5,8,12},{5,12,13,30},{5,29,30,72},{5,51,52,126},{6,8,10,24},{6,25,29,60},{6,50,52,144},{7,15,20,42},{7,24,25,84},{7,65,68,210},{8,15,17,60},{8,26,30,96},{8,29,35,84},{9,10,17,36},{9,12,15,54},{9,40,41,180},{9,65,70,252},{9,73,80,216},{9,75,78,324},{10,10,12,48},{10,10,16,48},{10,13,13,60},{10,17,21,84},{10,24,26,120},{10,35,39,168},{10,58,60,288},{11,13,20,66},{11,25,30,132},{11,60,61,330},{11,90,97,396},{12,16,20,96},{12,17,25,90},{12,35,37,210},{12,39,45,216},{12,50,58,240},{12,55,65,198},{13,13,24,60},{13,14,15,84},{13,20,21,126},{13,30,37,180},{13,37,40,240},{13,40,45,252},{13,40,51,156},{13,68,75,390},{13,84,85,546},{14,25,25,168},{14,30,40,168},{14,48,50,336},{14,61,65,420},{15,15,18,108},{15,15,24,108},{15,20,25,150},{15,26,37,156},{15,28,41,126},{15,34,35,252},{15,36,39,270},{15,37,44,264},{15,41,52,234},{15,52,61,336},{15,87,90,648},{16,17,17,120},{16,25,39,120},{16,30,34,240},{16,52,60,384},{16,58,70,336},{16,63,65,504},{17,17,30,120},{17,25,26,204},{17,25,28,210},{17,28,39,210},{17,39,44,330},{17,40,41,336},{17,55,60,462},{17,65,80,288},{17,89,90,756},{18,20,34,144},{18,24,30,216},{18,41,41,360},{18,75,87,540},{18,80,82,720},{19,20,37,114},{19,60,73,456},{20,20,24,192},{20,20,32,192},{20,21,29,210},{20,26,26,240},{20,34,42,336},{20,37,51,306},{20,48,52,480},{20,51,65,408},{20,53,55,528},{20,65,75,600},{20,70,78,672},{21,28,35,294},{21,41,50,420},{21,45,60,378},{21,61,68,630},{21,72,75,756},{21,82,89,840},{22,26,40,264},{22,50,60,528},{22,61,61,660},{22,85,91,924},{24,32,40,384},{24,34,50,360},{24,35,53,336},{24,37,37,420},{24,45,51,540},{24,70,74,840},{24,78,90,864},{25,25,30,300},{25,25,40,300},{25,25,48,168},{25,29,36,360},{25,33,52,330},{25,34,39,420},{25,38,51,456},{25,39,40,468},{25,39,56,420},{25,51,52,624},{25,51,74,300},{25,52,63,630},{25,60,65,750},{25,63,74,756},{25,74,77,924},{26,26,48,240},{26,28,30,336},{26,35,51,420},{26,40,42,504},{26,51,55,660},{26,51,73,420},{26,60,74,720},{26,73,97,420},{26,74,80,960},{26,75,91,840},{26,80,90,1008},{26,85,85,1092},{27,29,52,270},{27,30,51,324},{27,36,45,486},{28,45,53,630},{28,50,50,672},{28,60,80,672},{28,65,89,546},{29,29,40,420},{29,29,42,420},{29,35,48,504},{29,52,69,690},{29,52,75,546},{29,60,85,522},{29,65,68,936},{29,75,92,966},{30,30,36,432},{30,30,48,432},{30,39,39,540},{30,40,50,600},{30,51,63,756},{30,52,74,624},{30,56,82,504},{30,68,70,1008},{30,72,78,1080},{30,74,88,1056},{31,68,87,930},{32,34,34,480},{32,50,78,480},{32,53,75,720},{32,60,68,960},{32,65,65,1008},{33,34,65,264},{33,39,60,594},{33,41,58,660},{33,44,55,726},{33,56,65,924},{33,58,85,660},{33,75,90,1188},{34,34,60,480},{34,50,52,816},{34,50,56,840},{34,55,87,396},{34,56,78,840},{34,61,75,1020},{34,65,93,744},{34,78,88,1320},{34,80,82,1344},{35,35,42,588},{35,35,56,588},{35,44,75,462},{35,52,73,840},{35,53,66,924},{35,65,82,1092},{35,78,97,1260},{35,84,91,1470},{36,40,68,576},{36,48,60,864},{36,51,75,810},{36,61,65,1080},{36,77,85,1386},{36,82,82,1440},{37,37,70,420},{37,39,52,720},{37,72,91,1260},{37,91,96,1680},{38,40,74,456},{38,65,87,1140},{39,39,72,540},{39,41,50,780},{39,42,45,756},{39,52,65,1014},{39,55,82,924},{39,58,95,456},{39,60,63,1134},{39,62,85,1116},{39,80,89,1560},{39,85,92,1656},{40,40,48,768},{40,40,64,768},{40,42,58,840},{40,51,77,924},{40,52,52,960},{40,68,84,1344},{40,75,85,1500},{41,41,80,360},{41,50,73,984},{41,50,89,420},{41,51,58,1020},{41,60,95,798},{41,66,85,1320},{41,84,85,1680},{42,56,70,1176},{42,75,75,1512},{43,61,68,1290},{44,52,80,1056},{44,65,87,1386},{44,75,97,1584},{45,45,54,972},{45,45,72,972},{45,50,85,900},{45,60,75,1350},{48,51,51,1080},{48,55,73,1320},{48,64,80,1536},{48,74,74,1680},{48,85,91,2016},{50,50,60,1200},{50,50,80,1200},{50,50,96,672},{50,58,72,1440},{50,65,65,1500},{50,68,78,1680},{50,69,73,1656},{50,78,80,1872},{51,51,90,1080},{51,52,53,1170},{51,52,97,840},{51,68,85,1734},{51,75,78,1836},{51,75,84,1890},{52,52,96,960},{52,56,60,1344},{52,61,87,1560},{52,73,75,1800},{52,80,84,2016},{53,53,56,1260},{53,53,90,1260},{53,75,88,1980},{54,72,90,1944},{55,55,66,1452},{55,55,88,1452},{56,61,75,1680},{57,65,68,1710},{57,76,95,2166},{57,82,89,2280},{58,58,80,1680},{58,58,84,1680},{58,70,96,2016},{60,60,72,1728},{60,60,96,1728},{60,63,87,1890},{60,73,91,2184},{60,78,78,2160},{61,74,87,2220},{64,68,68,1920},{65,65,66,1848},{65,65,78,2028},{65,70,75,2100},{65,72,97,2340},{65,76,87,2394},{65,87,88,2640},{68,75,77,2310},{68,87,95,2850},{70,70,84,2352},{70,91,91,2940},{72,85,85,2772},{73,73,96,2640},{75,75,90,2700},{75,86,97,3096},{78,84,90,3024},{78,89,89,3120},{78,95,97,3420},{80,80,96,3072},{80,85,85,3000}}
复制代码

点评

nyy
除了穷举法,似乎没别的好办法了!  发表于 2023-12-6 11:56
nyy
结果306个  发表于 2023-12-6 09:59
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-12-6 11:56:17 | 显示全部楼层
如何高效产生一定范围内的勾股数呢?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-12-7 08:51:05 | 显示全部楼层
海伦三角形是边长和面积都是有理数的三角形。


有理数那可就太多了,但是有理数最终都能化成整数,所以还是讨论三边都是整数的情况吧
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-12-8 11:25:33 | 显示全部楼层
还是我的代码容易读懂
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-12-8 11:43:41 | 显示全部楼层
本帖最后由 northwolves 于 2023-12-8 11:53 编辑
  1. heron=Sqrt[(#1+#2+#3) (#2+#3-#1) (#1-#2+#3) (#1+#2-#3)]/4&;sol[max_]:=Reap[Do[If[GCD[a,b,c]==1&&IntegerQ[heron[a,b,c]],Sow@{a,b,c,heron[a,b,c]}],{c,max},{b,c},{a,c-b+1,b}]][[2,1]];sol@100
复制代码


{{3,4,5,6},{5,5,6,12},{5,5,8,12},{5,12,13,30},{10,13,13,60},{4,13,15,24},{13,14,15,84},{9,10,17,36},{8,15,17,60},{16,17,17,120},{11,13,20,66},{7,15,20,42},{10,17,21,84},{13,20,21,126},{13,13,24,60},{12,17,25,90},{7,24,25,84},{14,25,25,168},{3,25,26,36},{17,25,26,204},{17,25,28,210},{20,21,29,210},{6,25,29,60},{17,17,30,120},{11,25,30,132},{5,29,30,72},{8,29,35,84},{15,34,35,252},{25,29,36,360},{19,20,37,114},{15,26,37,156},{13,30,37,180},{12,35,37,210},{24,37,37,420},{16,25,39,120},{17,28,39,210},{25,34,39,420},{10,35,39,168},{29,29,40,420},{13,37,40,240},{25,39,40,468},{15,28,41,126},{9,40,41,180},{17,40,41,336},{18,41,41,360},{29,29,42,420},{15,37,44,264},{17,39,44,330},{13,40,45,252},{25,25,48,168},{29,35,48,504},{21,41,50,420},{39,41,50,780},{26,35,51,420},{20,37,51,306},{25,38,51,456},{13,40,51,156},{27,29,52,270},{25,33,52,330},{37,39,52,720},{15,41,52,234},{5,51,52,126},{25,51,52,624},{24,35,53,336},{28,45,53,630},{4,51,53,90},{51,52,53,1170},{26,51,55,660},{20,53,55,528},{25,39,56,420},{53,53,56,1260},{33,41,58,660},{41,51,58,1020},{17,55,60,462},{15,52,61,336},{11,60,61,330},{22,61,61,660},{25,52,63,630},{33,34,65,264},{20,51,65,408},{12,55,65,198},{33,56,65,924},{14,61,65,420},{36,61,65,1080},{16,63,65,504},{32,65,65,1008},{35,53,66,924},{65,65,66,1848},{21,61,68,630},{43,61,68,1290},{7,65,68,210},{29,65,68,936},{57,65,68,1710},{29,52,69,690},{37,37,70,420},{9,65,70,252},{41,50,73,984},{26,51,73,420},{35,52,73,840},{48,55,73,1320},{19,60,73,456},{50,69,73,1656},{25,51,74,300},{25,63,74,756},{35,44,75,462},{29,52,75,546},{32,53,75,720},{34,61,75,1020},{56,61,75,1680},{13,68,75,390},{52,73,75,1800},{40,51,77,924},{25,74,77,924},{68,75,77,2310},{41,41,80,360},{17,65,80,288},{9,73,80,216},{39,55,82,924},{35,65,82,1092},{33,58,85,660},{29,60,85,522},{39,62,85,1116},{41,66,85,1320},{36,77,85,1386},{13,84,85,546},{41,84,85,1680},{26,85,85,1092},{72,85,85,2772},{34,55,87,396},{52,61,87,1560},{38,65,87,1140},{44,65,87,1386},{31,68,87,930},{61,74,87,2220},{65,76,87,2394},{53,75,88,1980},{65,87,88,2640},{41,50,89,420},{28,65,89,546},{39,80,89,1560},{21,82,89,840},{57,82,89,2280},{78,89,89,3120},{53,53,90,1260},{17,89,90,756},{37,72,91,1260},{60,73,91,2184},{26,75,91,840},{22,85,91,924},{48,85,91,2016},{29,75,92,966},{39,85,92,1656},{34,65,93,744},{39,58,95,456},{41,60,95,798},{68,87,95,2850},{73,73,96,2640},{37,91,96,1680},{51,52,97,840},{65,72,97,2340},{26,73,97,420},{44,75,97,1584},{35,78,97,1260},{75,86,97,3096},{11,90,97,396},{78,95,97,3420},{51,53,100,714},{61,69,100,2070},{17,87,100,510},{21,89,100,840},{51,91,100,2310},{61,91,100,2730},{89,99,100,3960}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-12-8 11:59:30 | 显示全部楼层
这样好理解,计算稍慢一点

  1. heron=Sqrt[(#1+#2+#3) (#2+#3-#1) (#1-#2+#3) (#1+#2-#3)]/4&;
  2. sol[max_]:=Select[Flatten[Table[{a,b,c,heron[a,b,c]},{c,4,max},{b,c-1},{a,c-b+1,b}],2],GCD@@#==1&&IntegerQ[#[[4]]]&];
  3. sol@100
复制代码

点评

nyy
你的代码有小问题  发表于 2023-12-13 14:07
nyy
{c,4,max},{b,c-1}我怀疑你的代码有问题,难道b就不能等于c吗?  发表于 2023-12-13 13:43
nyy
我也看懂你的代码了  发表于 2023-12-13 13:22
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-12-13 11:37:10 | 显示全部楼层
zeroieme 发表于 2020-2-4 20:31
简化输出,反正后面非本原三角形放大系数是连续整数。

你们老板不敢把你裁员!
裁员后,你的代码就没办法维护了!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2023-12-13 13:49:37 | 显示全部楼层
northwolves 发表于 2023-12-8 11:59
这样好理解,计算稍慢一点

你的代码有问题,得不到
{16, 17, 17, 120}这种情况的解!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-21 11:26 , Processed in 0.032961 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表