找回密码
 欢迎注册
查看: 19609|回复: 2

[讨论] 格点阶梯跳跃问题

[复制链接]
发表于 2020-3-3 23:53:12 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
给定一个平面直接坐标系,坐标系上有一动点,从\((0,a)\)(\(a\)为整数)出发,沿着与横轴或纵轴平行的方向跳跃,从一个整点跳到另一个整点,不能走重复的线段,直到落到横轴上某个整点\((b,0)\)。用\(L\)表示动点走过的路径总长度。

问:是否一定有\(a+b-L\)为偶数?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2020-3-4 19:21:21 | 显示全部楼层
初始点为\((0,a)\),横走一次相当于\((\Delta x_1,a)\),竖走一次相当于\((0,a+\Delta y_1)\)。
若干次后走到\((b,0)\),意味着\(\D \sum_{i=1}^k \Delta x_i=b\),\(\D \sum_{i=1}^k \Delta y_i=-a\)

\(\D a+b-L=\sum_{i=1}^k \Delta x_i-\sum_{i=1}^k \Delta y_i-\sum_{i=1}^k \abs{\Delta x_i}-\sum_{i=1}^k \abs{\Delta y_i}\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2020-3-4 19:28:04 | 显示全部楼层
给定若干个整数,假定其中所有正数的和为\(P\),所有负数的和为\(Q\),那么它们的和为\(P+Q\)。
如果对这若干个整数取绝对值后求和,那么绝对值的和为\(P-Q\)。
这两个值的奇偶性是相同的。
所以\(\D \sum_{i=1}^k \Delta x_i-\sum_{i=1}^k \abs{\Delta x_i}\)为偶数,\(\D \sum_{i=1}^k \Delta y_i+\sum_{i=1}^k \abs{\Delta y_i}\)为偶数。
所以结果一定为偶数。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-22 13:07 , Processed in 0.026659 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表