- 注册时间
- 2008-11-26
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 149507
- 在线时间
- 小时
|
发表于 2020-3-15 13:14:54
|
显示全部楼层
- Clear["Global`*"];
- (*计算余弦值子函数,角度60*)
- fun[a_,b_,c_]:=a^2+b^2-2*a*b*(1/2)-c^2
- (*三个约数条件*)
- f1=fun[AD,AE,2]
- f2=fun[AD+x,AE+x,4*x]
- f3=fun[AD,AE+2*x,DF]
- (*拉格朗日乘子法目标函数+约数条件*)
- yy=DF+x1*f1+x2*f2+x3*f3
- (*求解七个偏导数*)
- yyAD=D[yy,AD]
- yyAE=D[yy,AE]
- yyDF=D[yy,DF]
- yyx=D[yy,x]
- yyx1=D[yy,x1]
- yyx2=D[yy,x2]
- yyx3=D[yy,x3]
- (*联立求解方程组*)
- out=Solve[
- yyAD==0&&
- yyAE==0&&
- yyDF==0&&
- yyx==0&&
- yyx1==0&&
- yyx2==0&&
- yyx3==0,
- {AD,AE,DF,x,x1,x2,x3}
- ];
- out1=FullSimplify[out]
- (*转化成根式显式表达*)
- Grid@ToRadicals[out1]
- N[%]
复制代码
求解结果
\[\begin{array}{ccccccc}
\text{AD}\to -\sqrt{\frac{76}{307}+\frac{816}{307 \sqrt{259}}} & \text{AE}\to -2 \sqrt{\frac{323}{307}+\frac{1012}{307 \sqrt{259}}} & \text{DF}\to \frac{1}{15} (-2) \left(\sqrt{259}+8\right) & x\to \frac{1}{15} (-2) \sqrt{17+\frac{76}{\sqrt{259}}} & \text{x1}\to \frac{1}{60} \left(\sqrt{259}+8\right) & \text{x2}\to -\frac{1}{8} & \text{x3}\to \frac{1}{52} \left(8-\sqrt{259}\right) \\
\text{AD}\to -\sqrt{\frac{76}{307}+\frac{816}{307 \sqrt{259}}} & \text{AE}\to -2 \sqrt{\frac{323}{307}+\frac{1012}{307 \sqrt{259}}} & \text{DF}\to \frac{2}{15} \left(\sqrt{259}+8\right) & x\to \frac{1}{15} (-2) \sqrt{17+\frac{76}{\sqrt{259}}} & \text{x1}\to \frac{1}{60} \left(-\sqrt{259}-8\right) & \text{x2}\to \frac{1}{8} & \text{x3}\to \frac{1}{52} \left(\sqrt{259}-8\right) \\
\text{AD}\to \sqrt{\frac{76}{307}+\frac{816}{307 \sqrt{259}}} & \text{AE}\to \sqrt{\frac{1292}{307}+\frac{4048}{307 \sqrt{259}}} & \text{DF}\to \frac{1}{15} (-2) \left(\sqrt{259}+8\right) & x\to \frac{2}{15} \sqrt{17+\frac{76}{\sqrt{259}}} & \text{x1}\to \frac{1}{60} \left(\sqrt{259}+8\right) & \text{x2}\to -\frac{1}{8} & \text{x3}\to \frac{1}{52} \left(8-\sqrt{259}\right) \\
\text{AD}\to \sqrt{\frac{76}{307}+\frac{816}{307 \sqrt{259}}} & \text{AE}\to \sqrt{\frac{1292}{307}+\frac{4048}{307 \sqrt{259}}} & \text{DF}\to \frac{2}{15} \left(\sqrt{259}+8\right) & x\to \frac{2}{15} \sqrt{17+\frac{76}{\sqrt{259}}} & \text{x1}\to \frac{1}{60} \left(-\sqrt{259}-8\right) & \text{x2}\to \frac{1}{8} & \text{x3}\to \frac{1}{52} \left(\sqrt{259}-8\right) \\
\text{AD}\to -2 \sqrt{\frac{4921-204 \sqrt{259}}{79513}} & \text{AE}\to 2 \sqrt{\frac{323}{307}-\frac{1012}{307 \sqrt{259}}} & \text{DF}\to \frac{1}{15} (-2) \left(\sqrt{259}-8\right) & x\to \frac{1}{15} (-2) \sqrt{17-\frac{76}{\sqrt{259}}} & \text{x1}\to \frac{1}{60} \left(\sqrt{259}-8\right) & \text{x2}\to \frac{1}{8} & \text{x3}\to \frac{1}{52} \left(-\sqrt{259}-8\right) \\
\text{AD}\to -2 \sqrt{\frac{4921-204 \sqrt{259}}{79513}} & \text{AE}\to 2 \sqrt{\frac{323}{307}-\frac{1012}{307 \sqrt{259}}} & \text{DF}\to \frac{2}{15} \left(\sqrt{259}-8\right) & x\to \frac{1}{15} (-2) \sqrt{17-\frac{76}{\sqrt{259}}} & \text{x1}\to \frac{1}{60} \left(8-\sqrt{259}\right) & \text{x2}\to -\frac{1}{8} & \text{x3}\to \frac{1}{52} \left(\sqrt{259}+8\right) \\
\text{AD}\to 2 \sqrt{\frac{4921-204 \sqrt{259}}{79513}} & \text{AE}\to -2 \sqrt{\frac{323}{307}-\frac{1012}{307 \sqrt{259}}} & \text{DF}\to \frac{1}{15} (-2) \left(\sqrt{259}-8\right) & x\to \frac{2}{15} \sqrt{17-\frac{76}{\sqrt{259}}} & \text{x1}\to \frac{1}{60} \left(\sqrt{259}-8\right) & \text{x2}\to \frac{1}{8} & \text{x3}\to \frac{1}{52} \left(-\sqrt{259}-8\right) \\
\text{AD}\to 2 \sqrt{\frac{4921-204 \sqrt{259}}{79513}} & \text{AE}\to -2 \sqrt{\frac{323}{307}-\frac{1012}{307 \sqrt{259}}} & \text{DF}\to \frac{2}{15} \left(\sqrt{259}-8\right) & x\to \frac{2}{15} \sqrt{17-\frac{76}{\sqrt{259}}} & \text{x1}\to \frac{1}{60} \left(8-\sqrt{259}\right) & \text{x2}\to -\frac{1}{8} & \text{x3}\to \frac{1}{52} \left(\sqrt{259}+8\right) \\
\end{array}\]
\[\begin{array}{ccccccc}
\text{AD}\to -0.64243 & \text{AE}\to -2.24227 & \text{DF}\to -3.21246 & x\to -0.621431 & \text{x1}\to 0.401558 & \text{x2}\to -0.125 & \text{x3}\to -0.155644 \\
\text{AD}\to -0.64243 & \text{AE}\to -2.24227 & \text{DF}\to 3.21246 & x\to -0.621431 & \text{x1}\to -0.401558 & \text{x2}\to 0.125 & \text{x3}\to 0.155644 \\
\text{AD}\to 0.64243 & \text{AE}\to 2.24227 & \text{DF}\to -3.21246 & x\to 0.621431 & \text{x1}\to 0.401558 & \text{x2}\to -0.125 & \text{x3}\to -0.155644 \\
\text{AD}\to 0.64243 & \text{AE}\to 2.24227 & \text{DF}\to 3.21246 & x\to 0.621431 & \text{x1}\to -0.401558 & \text{x2}\to 0.125 & \text{x3}\to 0.155644 \\
\text{AD}\to -0.287051 & \text{AE}\to 1.84096 & \text{DF}\to -1.07913 & x\to -0.467192 & \text{x1}\to 0.134891 & \text{x2}\to 0.125 & \text{x3}\to -0.463336 \\
\text{AD}\to -0.287051 & \text{AE}\to 1.84096 & \text{DF}\to 1.07913 & x\to -0.467192 & \text{x1}\to -0.134891 & \text{x2}\to -0.125 & \text{x3}\to 0.463336 \\
\text{AD}\to 0.287051 & \text{AE}\to -1.84096 & \text{DF}\to -1.07913 & x\to 0.467192 & \text{x1}\to 0.134891 & \text{x2}\to 0.125 & \text{x3}\to -0.463336 \\
\text{AD}\to 0.287051 & \text{AE}\to -1.84096 & \text{DF}\to 1.07913 & x\to 0.467192 & \text{x1}\to -0.134891 & \text{x2}\to -0.125 & \text{x3}\to 0.463336 \\
\end{array}\] |
|