找回密码
 欢迎注册
查看: 45321|回复: 11

[猜想] 自然数的所有真因子的和除以自身可以等于任何有理数

[复制链接]
发表于 2009-8-26 21:13:48 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
从完全数中得出的一个问题困扰很久。不知高手们能否给予解答。 自然数的所有因子的和(除了自身以外)除以自身是否可以等于任何正有理数呢? 也就是说对于任意给定的正有理数Q,一定能找到一个自然数,它的所有因子的和除以自身等于Q。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-26 21:18:04 | 显示全部楼层
应强调一下为“因子”,否则将无法表达小于1的有理数。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-28 06:18:19 | 显示全部楼层
这个问题是否定的. 对于任何即约分数$u/v>1$,如果它能够表示乘${sigma(n)}/n$的形式 那么显然n必须是v的倍数 假设v的因子分解形式为$p_1^{a_1}p_2^{a_2}...p_t^{a_t}$ 设n的因子分解形式为$p_1^{b_1}p_2^{b_2}..p_t^{b_t}...p_s^{b_s}$ 其中$s>=t,b_i>=a_i$ 那么${sigma(n)}/n={(p_1^{b_1+1}-1)(p_2^{b_2+1}-1)...(b_s^{b_s+1}-1)}/{p_1^{b_1}(p_1-1)p_2^{b_2}(p_2-1)...p_s^{b_s}(p_s-1)}$ $>=(1+1/{p_1})(1+1/{p_2})...(1+1/{p_s})$ $>=(1+1/{p_1})(1+1/{p_2})...(1+1/{p_t})$ 也就是我们需要选择一个充分接近1的有理数$u/v$就可以矛盾了. 比如取v=6,u=7,由于$7/6<(1+1/2)(1+1/3)=2$,那么必然不存在自然数n使得${sigma(n)}/n=7/6$

评分

参与人数 1威望 +3 鲜花 +3 收起 理由
gxqcn + 3 + 3 精彩绝伦

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-28 07:59:33 | 显示全部楼层
公式的>=能否显示成“≥”
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-28 08:11:12 | 显示全部楼层
TeX 中能显示成这种效果,见 3# mathe 的帖子。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-8-28 12:35:41 | 显示全部楼层
本帖最后由 056254628 于 2009-8-28 12:48 编辑 对于任何即约分数$n/v>1$,如果它能够表示成${sigma(n)}/n$的形式 那么显然n必须是v的倍数。 -------------------------------------------- 为什么是显然的? n=12, ${sigma(n)}/n$=16/12=4/3,又如何解释? --------------------- 不好意思,看错了。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-8-28 13:27:39 | 显示全部楼层
本帖最后由 056254628 于 2009-8-28 13:30 编辑 因为要求真因子,所以 3楼的 ${sigma(n)}/n$ 的计算结果还要减去1. 得不出那个结论。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-28 13:31:14 | 显示全部楼层
是一样的。 比方说,mathe 反证了楼主的猜想:不存在自然数 $n$ 使得 $(\sigma(n)-n)/n=1/6$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-8-28 13:43:26 | 显示全部楼层
那么 ${sigma(n)}/n -1$ 的值域又是什么呢? 比如它能取到的正有理数的集合为S,取不到的正有理数的集合为P 那么,P有没有最大值,有没有最小值,是否所有的正整数都会出现在S中,P中没有整数存在?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-8-28 22:31:27 | 显示全部楼层
续9#: P中没有最小值。 按照3#的计算方法,两个以上的素数的乘积的倒数都属于P中,所以P中没有最小值。 如$1/2*1/3=1/6$,$1/2*1/5=1/10$,$1/2*1/3*1/5*1/7=1/210$等等都属于P。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-24 14:10 , Processed in 0.033006 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表