- 注册时间
 - 2008-11-26
 
- 最后登录
 - 1970-1-1
 
- 威望
 -  星
 
- 金币
 -  枚
 
- 贡献
 -  分
 
- 经验
 -  点
 
- 鲜花
 -  朵
 
- 魅力
 -  点
 
- 上传
 -  次
 
- 下载
 -  次
 
- 积分
 - 149502
 
- 在线时间
 -  小时
 
 
 
 
 
 
 | 
 
 楼主 |
发表于 2020-5-14 10:21:55
|
显示全部楼层
 
 
 
 本帖最后由 mathematica 于 2020-5-14 10:24 编辑  
 
用特殊无理数来处理这个问题! 
- Clear["Global`*"];
 
 - (*取成特殊的无理数,伪符号变量,不会被消化吸收*)
 
 - a=Pi;b=E;
 
 - ans=Solve[
 
 - {
 
 -     (*切线方程,并且C点在切线上*)
 
 -     xc*xa/a^2+yc*ya/b^2==1,
 
 -     xc*xb/a^2+yc*yb/b^2==1,
 
 -     (*AB两点都在椭圆上*)
 
 -     xa*xa/a^2+ya*ya/b^2==1,
 
 -     xb*xb/a^2+yb*yb/b^2==1,
 
 -     (*AC与BC互相垂直*)
 
 -     (xc-xa)*(xc-xb)+(yc-ya)*(yc-yb)==0
 
 - },
 
 - {xa,ya,xb,yb,xc}]//FullSimplify
 
 - Grid[ans]
 
 
  复制代码 
 
总共六个变量,xa ya xb yb xc yc,但是只有五个方程,因此五个变量可以用其余的一个变量表达出来,因此就是解方程, 
求解最后的方程的结果如下: 
 
\[\begin{array}{ccccc} 
 \text{xa}\to -\frac{\pi  \sqrt{(e-\text{yc}) (\text{yc}+e)}}{e} & \text{ya}\to \text{yc} & \text{xb}\to -\frac{\pi  \sqrt{(e-\text{yc}) (\text{yc}+e)}}{e} & \text{yb}\to \text{yc} & \text{xc}\to -\frac{\pi  \sqrt{(e-\text{yc}) (\text{yc}+e)}}{e} \\ 
 \text{xa}\to \frac{\pi  \sqrt{(e-\text{yc}) (\text{yc}+e)}}{e} & \text{ya}\to \text{yc} & \text{xb}\to \frac{\pi  \sqrt{(e-\text{yc}) (\text{yc}+e)}}{e} & \text{yb}\to \text{yc} & \text{xc}\to \frac{\pi  \sqrt{(e-\text{yc}) (\text{yc}+e)}}{e} \\ 
 \text{xa}\to -\frac{\pi ^2 \left(e^2 \sqrt{-\text{yc}^2+e^2+\pi ^2}+\sqrt{\text{yc}^2 \left(-e^2 \text{yc}^2+\pi ^2 \text{yc}^2+e^4\right)}\right)}{\pi ^2 \text{yc}^2+e^2 (\pi -\text{yc}) (\text{yc}+\pi )+e^4} & \text{ya}\to \frac{e^2 \left(\sqrt{-\text{yc}^2+e^2+\pi ^2} \sqrt{\text{yc}^2 \left(-e^2 \text{yc}^2+\pi ^2 \text{yc}^2+e^4\right)}-\pi ^2 \text{yc}^2\right)}{(e-\pi ) (e+\pi ) \text{yc}^3-e^2 \left(e^2+\pi ^2\right) \text{yc}} & \text{xb}\to \frac{\pi ^2 \left(\sqrt{\text{yc}^2 \left(-e^2 \text{yc}^2+\pi ^2 \text{yc}^2+e^4\right)}-e^2 \sqrt{-\text{yc}^2+e^2+\pi ^2}\right)}{\pi ^2 \text{yc}^2+e^2 (\pi -\text{yc}) (\text{yc}+\pi )+e^4} & \text{yb}\to \frac{e^2 \left(\pi ^2 \text{yc}^2+\sqrt{-\text{yc}^2+e^2+\pi ^2} \sqrt{\text{yc}^2 \left(-e^2 \text{yc}^2+\pi ^2 \text{yc}^2+e^4\right)}\right)}{\text{yc} \left(\pi ^2 \text{yc}^2+e^2 (\pi -\text{yc}) (\text{yc}+\pi )+e^4\right)} & \text{xc}\to -\sqrt{-\text{yc}^2+e^2+\pi ^2} \\ 
 \text{xa}\to \frac{\pi ^2 \left(\sqrt{\text{yc}^2 \left(-e^2 \text{yc}^2+\pi ^2 \text{yc}^2+e^4\right)}-e^2 \sqrt{-\text{yc}^2+e^2+\pi ^2}\right)}{\pi ^2 \text{yc}^2+e^2 (\pi -\text{yc}) (\text{yc}+\pi )+e^4} & \text{ya}\to \frac{e^2 \left(\pi ^2 \text{yc}^2+\sqrt{-\text{yc}^2+e^2+\pi ^2} \sqrt{\text{yc}^2 \left(-e^2 \text{yc}^2+\pi ^2 \text{yc}^2+e^4\right)}\right)}{\text{yc} \left(\pi ^2 \text{yc}^2+e^2 (\pi -\text{yc}) (\text{yc}+\pi )+e^4\right)} & \text{xb}\to \frac{\pi ^2 \left(e^2 \sqrt{-\text{yc}^2+e^2+\pi ^2}+\sqrt{\text{yc}^2 \left(-e^2 \text{yc}^2+\pi ^2 \text{yc}^2+e^4\right)}\right)}{(e-\pi ) (e+\pi ) \text{yc}^2-e^2 \left(e^2+\pi ^2\right)} & \text{yb}\to \frac{e^2 \left(\sqrt{-\text{yc}^2+e^2+\pi ^2} \sqrt{\text{yc}^2 \left(-e^2 \text{yc}^2+\pi ^2 \text{yc}^2+e^4\right)}-\pi ^2 \text{yc}^2\right)}{(e-\pi ) (e+\pi ) \text{yc}^3-e^2 \left(e^2+\pi ^2\right) \text{yc}} & \text{xc}\to -\sqrt{-\text{yc}^2+e^2+\pi ^2} \\ 
 \text{xa}\to -\frac{\pi ^2 \left(\sqrt{\text{yc}^2 \left(-e^2 \text{yc}^2+\pi ^2 \text{yc}^2+e^4\right)}-e^2 \sqrt{-\text{yc}^2+e^2+\pi ^2}\right)}{\pi ^2 \text{yc}^2+e^2 (\pi -\text{yc}) (\text{yc}+\pi )+e^4} & \text{ya}\to \frac{e^2 \left(\pi ^2 \text{yc}^2+\sqrt{-\text{yc}^2+e^2+\pi ^2} \sqrt{\text{yc}^2 \left(-e^2 \text{yc}^2+\pi ^2 \text{yc}^2+e^4\right)}\right)}{\text{yc} \left(\pi ^2 \text{yc}^2+e^2 (\pi -\text{yc}) (\text{yc}+\pi )+e^4\right)} & \text{xb}\to \frac{\pi ^2 \left(e^2 \sqrt{-\text{yc}^2+e^2+\pi ^2}+\sqrt{\text{yc}^2 \left(-e^2 \text{yc}^2+\pi ^2 \text{yc}^2+e^4\right)}\right)}{\pi ^2 \text{yc}^2+e^2 (\pi -\text{yc}) (\text{yc}+\pi )+e^4} & \text{yb}\to \frac{e^2 \left(\sqrt{-\text{yc}^2+e^2+\pi ^2} \sqrt{\text{yc}^2 \left(-e^2 \text{yc}^2+\pi ^2 \text{yc}^2+e^4\right)}-\pi ^2 \text{yc}^2\right)}{(e-\pi ) (e+\pi ) \text{yc}^3-e^2 \left(e^2+\pi ^2\right) \text{yc}} & \text{xc}\to \sqrt{-\text{yc}^2+e^2+\pi ^2} \\ 
 \text{xa}\to \frac{\pi ^2 \left(e^2 \sqrt{-\text{yc}^2+e^2+\pi ^2}+\sqrt{\text{yc}^2 \left(-e^2 \text{yc}^2+\pi ^2 \text{yc}^2+e^4\right)}\right)}{\pi ^2 \text{yc}^2+e^2 (\pi -\text{yc}) (\text{yc}+\pi )+e^4} & \text{ya}\to \frac{e^2 \left(\sqrt{-\text{yc}^2+e^2+\pi ^2} \sqrt{\text{yc}^2 \left(-e^2 \text{yc}^2+\pi ^2 \text{yc}^2+e^4\right)}-\pi ^2 \text{yc}^2\right)}{(e-\pi ) (e+\pi ) \text{yc}^3-e^2 \left(e^2+\pi ^2\right) \text{yc}} & \text{xb}\to \frac{\pi ^2 \left(\sqrt{\text{yc}^2 \left(-e^2 \text{yc}^2+\pi ^2 \text{yc}^2+e^4\right)}-e^2 \sqrt{-\text{yc}^2+e^2+\pi ^2}\right)}{(e-\pi ) (e+\pi ) \text{yc}^2-e^2 \left(e^2+\pi ^2\right)} & \text{yb}\to \frac{e^2 \left(\pi ^2 \text{yc}^2+\sqrt{-\text{yc}^2+e^2+\pi ^2} \sqrt{\text{yc}^2 \left(-e^2 \text{yc}^2+\pi ^2 \text{yc}^2+e^4\right)}\right)}{\text{yc} \left(\pi ^2 \text{yc}^2+e^2 (\pi -\text{yc}) (\text{yc}+\pi )+e^4\right)} & \text{xc}\to \sqrt{-\text{yc}^2+e^2+\pi ^2} \\ 
 \text{xa}\to \frac{\pi ^2 \sqrt{\left(\sqrt{\pi ^2-e^2}-i \text{yc}\right)^2} \left(i \sqrt{\pi ^2-e^2} \text{yc}-e^2+\pi ^2\right)}{(e-\pi ) (e+\pi ) \left(\text{yc}^2-e^2+\pi ^2\right)} & \text{ya}\to \frac{i e^2}{\sqrt{\pi ^2-e^2}} & \text{xb}\to \frac{\pi ^2 \left(e^2+i \sqrt{\pi ^2-e^2} \text{yc}\right) \left(\text{yc}^2-e^2+\pi ^2\right)}{\sqrt{\left(\sqrt{\pi ^2-e^2}-i \text{yc}\right)^2} \left(-e^2 \left(\text{yc}^2+\pi ^2\right)+\pi ^2 \text{yc} \left(\text{yc}-i \sqrt{\pi ^2-e^2}\right)+e^4\right)} & \text{yb}\to \frac{e^4 \sqrt{\pi ^2-e^2}+e^2 \text{yc} \left(-\sqrt{\pi ^2-e^2} \text{yc}+i \pi ^2\right)}{-i e^2 \left(\text{yc}^2+\pi ^2\right)+\pi ^2 \left(\sqrt{\pi ^2-e^2}+i \text{yc}\right) \text{yc}+i e^4} & \text{xc}\to -\sqrt{\left(\sqrt{\pi ^2-e^2}-i \text{yc}\right)^2} \\ 
 \text{xa}\to \frac{\pi ^2 \sqrt{\left(\sqrt{\pi ^2-e^2}-i \text{yc}\right)^2} \left(i \sqrt{\pi ^2-e^2} \text{yc}-e^2+\pi ^2\right)}{(e-\pi ) (e+\pi ) \left(-\text{yc}^2+e^2-\pi ^2\right)} & \text{ya}\to \frac{i e^2}{\sqrt{\pi ^2-e^2}} & \text{xb}\to -\frac{\pi ^2 \left(e^2-i \sqrt{\pi ^2-e^2} \text{yc}\right) \left(\text{yc}^2-e^2+\pi ^2\right)}{\sqrt{\left(\sqrt{\pi ^2-e^2}-i \text{yc}\right)^2} \left(i \pi ^2 \text{yc} \left(\sqrt{\pi ^2-e^2}+i \text{yc}\right)+e^2 \left(-\pi ^2+\text{yc} \left(\text{yc}-2 i \sqrt{\pi ^2-e^2}\right)\right)+e^4\right)} & \text{yb}\to \frac{e^4 \left(2 \text{yc}-i \sqrt{\pi ^2-e^2}\right)-e^2 \text{yc} \left(\pi ^2+i \sqrt{\pi ^2-e^2} \text{yc}\right)}{i \pi ^2 \text{yc} \left(\sqrt{\pi ^2-e^2}+i \text{yc}\right)+e^2 \left(-\pi ^2+\text{yc} \left(\text{yc}-2 i \sqrt{\pi ^2-e^2}\right)\right)+e^4} & \text{xc}\to \sqrt{\left(\sqrt{\pi ^2-e^2}-i \text{yc}\right)^2} \\ 
 \text{xa}\to \frac{\pi ^2 \sqrt{\left(\sqrt{\pi ^2-e^2}+i \text{yc}\right)^2} \left(-i \sqrt{\pi ^2-e^2} \text{yc}-e^2+\pi ^2\right)}{(e-\pi ) (e+\pi ) \left(\text{yc}^2-e^2+\pi ^2\right)} & \text{ya}\to -\frac{i e^2}{\sqrt{\pi ^2-e^2}} & \text{xb}\to \frac{\pi ^2 \left(e^2-i \sqrt{\pi ^2-e^2} \text{yc}\right) \left(\text{yc}^2-e^2+\pi ^2\right)}{\sqrt{\left(\sqrt{\pi ^2-e^2}+i \text{yc}\right)^2} \left(-e^2 \left(\text{yc}^2+\pi ^2\right)+\pi ^2 \text{yc} \left(\text{yc}+i \sqrt{\pi ^2-e^2}\right)+e^4\right)} & \text{yb}\to -\frac{i e^2}{\sqrt{\pi ^2-e^2}} & \text{xc}\to -\sqrt{\left(\sqrt{\pi ^2-e^2}+i \text{yc}\right)^2} \\ 
 \text{xa}\to \frac{\pi ^2 \sqrt{\left(\sqrt{\pi ^2-e^2}+i \text{yc}\right)^2} \left(-i \sqrt{\pi ^2-e^2} \text{yc}-e^2+\pi ^2\right)}{(e-\pi ) (e+\pi ) \left(-\text{yc}^2+e^2-\pi ^2\right)} & \text{ya}\to -\frac{i e^2}{\sqrt{\pi ^2-e^2}} & \text{xb}\to -\frac{\pi ^2 \left(e^2+i \sqrt{\pi ^2-e^2} \text{yc}\right) \left(\text{yc}^2-e^2+\pi ^2\right)}{\sqrt{\left(\sqrt{\pi ^2-e^2}+i \text{yc}\right)^2} \left(\pi ^2 \left(-\text{yc}-i \sqrt{\pi ^2-e^2}\right) \text{yc}+e^2 \left(-\pi ^2+\text{yc} \left(\text{yc}+2 i \sqrt{\pi ^2-e^2}\right)\right)+e^4\right)} & \text{yb}\to \frac{e^4 \left(2 \text{yc}+i \sqrt{\pi ^2-e^2}\right)+e^2 \text{yc} \left(-\pi ^2+i \sqrt{\pi ^2-e^2} \text{yc}\right)}{\pi ^2 \left(-\text{yc}-i \sqrt{\pi ^2-e^2}\right) \text{yc}+e^2 \left(-\pi ^2+\text{yc} \left(\text{yc}+2 i \sqrt{\pi ^2-e^2}\right)\right)+e^4} & \text{xc}\to \sqrt{\left(\sqrt{\pi ^2-e^2}+i \text{yc}\right)^2} \\ 
\end{array}\] 
 
 
 
 
 
 
但是高考题,肯定不能这么解答 
 
如果只要XC这一列,那么解答是 
\[\left\{-\frac{\pi  \sqrt{(e-\text{yc}) (\text{yc}+e)}}{e},\frac{\pi  \sqrt{(e-\text{yc}) (\text{yc}+e)}}{e},-\sqrt{-\text{yc}^2+e^2+\pi ^2},-\sqrt{-\text{yc}^2+e^2+\pi ^2},\sqrt{-\text{yc}^2+e^2+\pi ^2},\sqrt{-\text{yc}^2+e^2+\pi ^2},-\sqrt{\left(\sqrt{\pi ^2-e^2}-i \text{yc}\right)^2},\sqrt{\left(\sqrt{\pi ^2-e^2}-i \text{yc}\right)^2},-\sqrt{\left(\sqrt{\pi ^2-e^2}+i \text{yc}\right)^2},\sqrt{\left(\sqrt{\pi ^2-e^2}+i \text{yc}\right)^2}\right\}\] 
从这个回答可以知道是圆的方程 |   
 
 
 
 |