- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19891
- 在线时间
- 小时
|
楼主 |
发表于 2020-7-21 19:55:18
|
显示全部楼层
现在我们利用渐近分析给出最终结果:
设\(x=\frac{\pi}{3}+\frac{u_1}{t}+\frac{u_2}{t^2}+\frac{u_3}{t^3}+\frac{u_4}{t^4}+\frac{u_5}{t^5}+\frac{u_6}{t^6}\)
其中\(t=(-2)^n\)
为了方便输入分析计算结果,我们简记\(2^k=a, (-1)^k=x,\sqrt{3}=y,(-1)^n=z\)
\(\frac{2^k}{\tan(2^kx)}=\frac{ayx}{3} - \frac{4a^2u_1}{3t}+\frac{a(60a^2u_1^2xy - 180au_2)}{135t^2}+ \frac{a(-120a^3u_1^3 + 120a^2u_1u_2xy - 180au_3)}{135t^3} +\frac{a(60a^4u_1^4xy - 360a^3u_1^2u_2 + 120a^2u_1u_3xy + 60a^2u_2^2xy - 180au_4)}{135t^4} + \frac{a(-104a^5u_1^5 + 240a^4u_1^3u_2xy - 360a^3u_1^2u_3 - 360a^3u_1u_2^2 + 120a^2u_1u_4xy + 120a^2u_2u_3xy - 180au_5)}{135t^5} + \frac{a(56a^6u_1^6xy - 520a^5u_1^4u_2 + 240a^4u_1^3u_3xy + 360a^4u_1^2u_2^2xy - 360a^3u_1^2u_4 - 720a^3u_1u_2u_3 - 120a^3u_2^3 + 120a^2u_1u_5xy + 120a^2u_2u_4xy + 60a^2u_3^2xy - 180au_6)}{135t^6}+\dots\)
\(\sum_{k=0}^n \frac{2^k}{\tan(2^kx)}=(-\frac{128}{135}u_1^3 - \frac{16}{9}u_1 + \frac{128}{297}yu_1^4 + \frac{32}{81}yu_1^2 + \frac{7168}{17415}yu_1^6 - \frac{6656}{8505}u_1^5 + \frac{2}{9}y)t + \frac{64yu_1u_2}{81} + \frac{512yu_1^3u_2}{297} - \frac{128u_1^2u_2}{45} - \frac{6656u_1^4u_2}{1701} - \frac{16u_2}{9}+ \frac{y}{9} +\frac{(-16/9u_3 + 4/9u_1 + 64/81yu_1u_3 + 512/297yu_1^3u_3 + 256/99yu_1^2u_2^2 + 32/81yu_2^2 - 128/45u_1u_2^2 - 128/45u_1^2u_3}{t} + \frac{-16/9u_4 - 128/135u_2^3 + 4/9u_2 - 256/45u_1u_2u_3 + 64/81yu_1u_4 + 64/81yu_2u_3 + 4/81yu_1^2 - 128/45u_1^2u_4}{t^2} + \frac{-16/9u_5 + 4/9u_3 + 8/81yu_1u_2 + 64/81yu_1u_5 + 64/81yu_2u_4 + 32/81yu_3^2 + 8/135u_1^3}{t^3} + \frac{-16/9u_6 + 4/9u_4 + 8/81yu_1u_3 + 4/297yu_1^4 + 4/81yu_2^2 + 8/45u_1^2u_2}{t^4} + \frac{4/9u_5 + 8/81yu_1u_4 + 16/297yu_1^3u_2 + 8/81yu_2u_3 + 104/8505u_1^5 + 8/45u_1^2u_3 + 8/45u_1u_2^2}{t^5} + \frac{4/9u_6 + 16/45u_1u_2u_3 + 8/135u_2^3 + 8/81yu_1u_5 + 8/81yu_2u_4 + 16/297yu_1^3u_3 + 8/99yu_1^2u_2^2 + 4/81yu_3^2 + 56/17415yu_1^6 + 104/1701u_1^4u_2 + 8/45u_1^2u_4}{t^6}+\dots\)
由此得到:
\(-\frac{128}{135}u_1^3 - \frac{16}{9}u_1 + \frac{128}{297}yu_1^4 + \frac{32}{81}yu_1^2 + \frac{7168}{17415}yu_1^6 - \frac{6656}{8505}u_1^5 + \frac{2}{9}y=0\)
\(\frac{64yu_1u_2}{81} + \frac{512yu_1^3u_2}{297} - \frac{128u_1^2u_2}{45} - \frac{6656u_1^4u_2}{1701} - \frac{16u_2}{9}+ \frac{y}{9}=0\)
\(-\frac{16}{9}u_3 + \frac{4}{9}u_1 + \frac{64}{81}yu_1u_3 + \frac{512}{297}yu_1^3u_3 +\frac{256}{99}yu_1^2u_2^2 +\frac{32}{81}yu_2^2 - \frac{128}{45}u_1u_2^2 - \frac{128}{45}u_1^2u_3=0\)
\(-\frac{16}{9}u_4 - \frac{128}{135}u_2^3 + \frac{4}{9}u_2 - \frac{256}{45}u_1u_2u_3 + \frac{64}{81}yu_1u_4 + \frac{64}{81}yu_2u_3 + \frac{4}{81}yu_1^2 - \frac{128}{45}u_1^2u_4=0\)
\(-\frac{16}{9}u_5 + \frac{4}{9}u_3 + \frac{8}{81}yu_1u_2 + \frac{64}{81}yu_1u_5 + \frac{64}{81}yu_2u_4 +\frac{32}{81}yu_3^2 + \frac{8}{135}u_1^3=0\)
\(-\frac{16}{9}u_6 +\frac{4}{9}u_4 + \frac{8}{81}yu_1u_3 + \frac{4}{297}yu_1^4 + \frac{4}{81}yu_2^2 + \frac{8}{45}u_1^2u_2=0\)
可解得:
\({u_1 = 0.2314912188, u_2 = 0.1212208330, u_3 = 0.06774522625, u_4 = 0.03544953868, u_5 = 0.03057260894, u_6 = 0.01176569735}\)
\(\sin(2^kx)=\frac{-xy}{2}- \frac{au_1}{2t} + \frac{1/4a^2xyu_1^2 - 1/2au_2}{t^2} + \frac{1/2a^2xyu_1u_2 - 1/2au_3 + 1/12a^3u_1^3}{t^3} + \frac{-1/48xya^4u_1^4 + 1/4a^2xyu_2^2 + 1/2xya^2u_1u_3 + 1/4a^3u_1^2u_2 - 1/2au_4}{t^4} + \frac{1/2xya^2u_2u_3 - 1/12xya^4u_2u_1^3 + 1/2xya^2u_1u_4 + 1/4a^3u_1^2u_3 - 1/2au_5 - 1/240a^5u_1^5 + 1/4a^3u_1u_2^2}{t^5} + \frac{1/1440xya^6u_1^6 - 1/8xya^4u_1^2u_2^2 + 1/4xya^2u_3^2 + 1/2xya^2u_2u_4 - 1/12xya^4u_1^3u_3 + 1/2xya^2u_1u_5 - 1/48a^5u_2u_1^4 + 1/4a^3u_1^2u_4 - 1/2au_6 + 1/12a^3u_2^3 + 1/2a^3u_1u_2u_3}{t^6}+\dots\)
\(\sum_{k=0}^n\ln(\sin(2^kx)=(n+1)\ln(\frac{-\sqrt{3}}{2})+\frac{128}{1485}yu_1^5 + \frac{2}{9}yu_1 + \frac{32}{243}yu_1^3 - \frac{3328}{25515}u_1^6 - \frac{32}{135}u_1^4 - \frac{8}{9}u_1^2 + \frac{1/9yu_1 + 128/297yu_1^4u_2 + 32/81yu_1^2u_2 - 16/9u_1u_2 - 128/135u_2u_1^3 + 2/9yu_2}{t} + \frac{1/9yu_2 + 32/81yu_2^2u_1 + 32/81yu_1^2u_3 - 16/9u_1u_3 - 128/135u_1^3u_3 - 64/45u_1^2u_2^2 + 2/9yu_3 - 8/9u_2^2 + 2/9u_1^2}{t^2} + \frac{4/243yu_1^3 + 1/9yu_3 + 4/9u_1u_2 + 64/81yu_1u_2u_3 + 32/81yu_1^2u_4 - 16/9u_1u_4 + 32/243yu_2^3 + 2/9yu_4 - 16/9u_2u_3}{t^3} + \frac{1/9yu_4 + 2/9u_2^2 + 4/81yu_1^2u_2 - 16/9u_1u_5 - 16/9u_2u_4 + 2/9yu_5 - 8/9u_3^2 + 2/135u_1^4 + 4/9u_1u_3}{t^4} + \frac{4/1485yu_1^5 + 1/9yu_5 + 4/81yu_1^2u_3 + 4/81yu_2^2u_1 + 2/9yu_6 + 8/135u_2u_1^3 + 4/9u_1u_4 + 4/9u_2u_3}{t^5} + \frac{8/81yu_1u_2u_3 + 4/243yu_2^3 + 1/9yu_6 + 2/9u_3^2 + 4/297yu_1^4u_2 + 4/81yu_1^2u_4 + 8/135u_1^3u_3 + 4/45u_1^2u_2^2 + 52/25515u_1^6 + 4/9u_1u_5 + 4/9u_2u_4}{t^6}+\dots\)
\(\prod_{k=0}^n\sin(2^kx)=(\frac{-\sqrt{3}}{2})^{n+1}\exp(v_0)(1 + \frac{v_1}{t} + \frac{v_1^2/2 + v_2}{t^2} + \frac{v_3 + v_1v_2 + 1/6v_1^3}{t^3} + \frac{v_4 + v_1v_3 + 1/2v_2v_1^2 + 1/2v_2^2 + 1/24v_1^4}{t^4} + \frac{v_5 + v_1v_4 + 1/2v_3v_1^2 + v_3v_2 + 1/2v_1v_2^2 + 1/6v_2v_1^3 + 1/120v_1^5}{t^5} + \frac{v_6 + v_1v_5 + 1/2v_4v_1^2 + v_4v_2 + 1/2v_3^2 + v_3v_1v_2 + 1/6v_3v_1^3 + 1/4v_2^2v_1^2 + 1/6v_2^3 + 1/24v_2v_1^4 + 1/720v_1^6}{t^6}+\dots)\)
\(\prod_{k=0}^n\sin(2^kx)=(\frac{-\sqrt{3}}{2})^{n+1}\exp(v_0)(1+\frac{w_1}{t}+\frac{w_2}{t^2}+\frac{w_3}{t^3}+\frac{w_4}{t^4}+\frac{w_5}{t^5}+\frac{w_6}{t^6}+\dots)\)
其中:
\(v_0 = \frac{128}{1485}yu_1^5 +\frac{2}{9}yu_1 + \frac{32}{243}yu_1^3 - \frac{3328}{25515}u_1^6 - \frac{32}{135}u_1^4 - \frac{8}{9}u_1^2\)
\(v_1 = \frac{1}{9}yu_1 + \frac{128}{297}yu_1^4u_2 + \frac{32}{81}yu_1^2u_2 - \frac{16}{9}u_1u_2 - \frac{128}{135}u_2u_1^3 + \frac{2}{9}yu_2\)
\(v_2 = \frac{1}{9}yu_2 + \frac{32}{81}yu_2^2u_1 + \frac{32}{81}yu_1^2u_3 - \frac{16}{9}u_1u_3 - \frac{128}{135}u_1^3u_3 - \frac{64}{45}u_1^2u_2^2 + \frac{2}{9}yu_3 - \frac{8}{9}u_2^2 + \frac{2}{9}u_1^2\)
\(v_3 = \frac{4}{243}yu_1^3 + \frac{1}{9}yu_3 + \frac{4}{9}u_1u_2 +\frac{64}{81}yu_1u_2u_3 +\frac{32}{81}yu_1^2u_4 -\frac{16}{9}u_1u_4 +\frac{32}{243}yu_2^3 +\frac{2}{9}yu_4 -\frac{16}{9}u_2u_3\)
\(v_4 = \frac{1}{9}yu_4 + \frac{2}{9}u_2^2 + \frac{4}{81}yu_1^2u_2 - \frac{16}{9}u_1u_5 - \frac{16}{9}u_2u_4 + \frac{2}{9}yu_5 - \frac{8}{9}u_3^2 +\frac{2}{135}u_1^4 + \frac{4}{9}u_1u_3\)
\(v_5 = \frac{4}{1485}yu_1^5 + \frac{1}{9}yu_5 +\frac{4}{81}yu_1^2u_3 + \frac{4}{81}yu_2^2u_1 + \frac{2}{9}yu_6 + \frac{8}{135}u_2u_1^3 + \frac{4}{9}u_1u_4 + \frac{4}{9}u_2u_3\)
\(v_6 = \frac{8}{81}yu_1u_2u_3 + \frac{4}{243}yu_2^3 + \frac{1}{9}yu_6 + \frac{2}{9}u_3^2 + \frac{4}{297}yu_1^4u_2 + \frac{4}{81}yu_1^2u_4 + \frac{8}{135}u_1^3u_3 + \frac{4}{45}u_1^2u_2^2 + \frac{52}{25515}u_1^6 +\frac{4}{9}u_1u_5 + \frac{4}{9}u_2u_4\)
\(w_1 = -\frac{1}{4455}y(-1920u_1^4u_2 + 1408u_1^3u_2y - 1760u_1^2u_2 + 2640u_1u_2y - 495u_1 - 990u_2)\)
\(w_2 = -16/81yu_1^2u_2 + 128/891u_1^5u_2 + 32/243u_2u_1^3 + 2/27u_1u_2 + 8192/29403u_1^8u_2^2 + 192512/200475u_2^2u_1^6 - 137216/120285yu_1^5u_2^2 - 16384/40095yu_1^7u_2^2 + 265472/120285u_1^4u_2^2 - 3328/3645yu_1^3u_2^2 + 512/1215u_1^2u_2^2 + 13/54u_1^2 - 22/27u_2^2 - 128/1215yu_1^4u_2 + 1/9yu_2 + 32/81yu_1^2u_3 - 16/9u_1u_3 - 128/135u_1^3u_3 + 2/9yu_3\)
\(w_3,w_4,w_5,w_6\)表达太长略
代入\(u_1,u_2,u_3,u_4,u_5,u_6\)值可以得到
\({v_0 = 0.0436950351879121, v_1 = 0.0446002718761726, v_2 = 0.0232659703554701, v_3 = 0.0146271591609330, v_4 = 0.0051224100527021, v_5 = 0.0184030658248678, v_6 = 0.00900622571847738, w_1 = 0.0446002718761720, w_2 = 0.0242605624811846, w_3 = 0.0156796141239876, w_4 = 0.00606874303617570, w_5 = 0.0189988064877544, w_6 = 0.0100760233605138}\)
最终可以得到:
\(x=\frac{\pi}{3} + \frac{0.2314912188(-1)^n}{2^n} + \frac{0.1212208330}{4^n}+\frac{ 0.06774522625(-1)^n}{8^n} + \frac{0.03544953868}{16^n}+\frac{0.03057260894(-1)^n}{32^n} + \frac{0.01176569735}{64^n}+\dots\)
\(S(n,x)=0.818491716899662(\frac{3}{4})^n(1 + \frac{0.08920054376(-1)^n}{2^n}+ \frac{0.05051030921}{4^n}+\frac{0.03352328361(-1)^n}{8^n} +\frac{ 0.01412469106}{16^n}+ \frac{0.03929974068(-1)^n}{32^n}+\frac{0.02238706313}{64^n}+\dots)\)
我们可得检验上面结果的精确度:
对于最大值零点x的检验:
[n = 1,数值计算 0 .9553166180,公式计算 0 .9547330377, 公式计算误差 -0.5835803e-3],
[n = 2, 数值计算1.113871858, 公式计算1.113876380, 公式计算误差0.4522e-5],
[n = 3, 数值计算1.020037970, 公式计算1.020030676, 公式计算误差-0.7294e-5],
[n = 4,数值计算 1.062156021, 公式计算1.062156381, 公式计算误差3.60*10^(-7)],
[n = 5, 数值计算1.040080400, 公式计算1.040079796, 公式计算误差-6.04*10^(-7)],
[n = 6, 数值计算1.050844294, 公式计算1.050844457,公式计算误差 1.63*10^(-7)],
[n = 7, 数值计算1.045396504, 公式计算1.045396392, 公式计算误差-1.12*10^(-7)],
[n = 8, 数值计算1.048103620, 公式计算1.048103667, 公式计算误差4.7*10^(-8)],
[n = 9, 数值计算1.046745908, 公式计算1.046745882, 公式计算误差-2.6*10^(-8)]
对于最大值S(n,x)的检验:
[n = 1, 数值计算 0.5925925927,公式计算0 .5916721327,公式计算误差 -0.9204600e-3],
[n = 2,数值计算 0 .4723877416, 公式计算0.4724087957, 公式计算误差0.210541e-4],
[n = 3, 数值计算 0.3417146295, 公式计算0.3417017786, 公式计算误差-0.128509e-4],
[n = 4,数值计算 0 .2604733070, 公式计算0.2604729770, 公式计算误差-3.300*10^(-7)],
[n = 5,数值计算 0 .1937018282, 公式计算0.1936998808, 公式计算误差-0.19474e-5],
[n = 6, 数值计算 0.1458794554, 公式计算0.1458787903, 公式计算误差-6.651*10^(-7)],
[n = 7, 数值计算 0.1091804079,公式计算0 .1091796529, 公式计算误差-7.550*10^(-7)],
[n = 8, 数值计算 0.8197066428e-1, 公式计算0.8197020681e-1, 公式计算误差-4.5747*10^(-7)],
[n = 9, 数值计算 0.6144587996e-1, 公式计算0.6144549873e-1, 公式计算误差-3.8123*10^(-7)] |
|