- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19886
- 在线时间
- 小时
|
发表于 2020-9-14 21:57:40
|
显示全部楼层
对于一般情形:
一个椭圆\(L_1: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\),位于椭圆\(L_2: \frac{(x-x_0)^2}{m^2}+\frac{(y-y_0)^2}{n^2}=1\)内,若直线外切于椭圆\(L_1\)于点\(P\)并交椭圆于\(L_2\)于\(A,B\)两点;
首先我们设\(A[x_1,y_1],B[x_2,y_2],P[x_3,y_3],x_3=\frac{a(1-t^2)}{1+t^2},y_3=\frac{2bt}{1+t^2}\)
则\(\frac{AP}{BP}=k\)满足方程:
2*a*b^2*m^2*n^2*t^8*x0 - 4*a*b^2*m^2*n^2*t^6*x0 - 16*a^2*b*m^2*n^2*t^5*y0 - 16*a^2*b*m^2*n^2*t^3*y0 + 4*a*b^2*m^2*n^2*t^2*x0 - b^2*m^4*n^2*t^8 + b^2*m^4*t^8*y0^2 - 4*b^3*m^4*t^7*y0 + 8*a^3*n^4*t^6*x0 - 4*a^2*m^2*n^4*t^6 + 4*a^2*n^4*t^6*x0^2 + 4*b^3*m^4*t^5*y0 - 8*a^2*m^2*n^4*t^4 + 8*a^2*n^4*t^4*x0^2 + 2*b^2*m^4*n^2*t^4 - 2*b^2*m^4*t^4*y0^2 + 4*b^3*m^4*t^3*y0 - 8*a^3*n^4*t^2*x0 - 4*a^2*m^2*n^4*t^2 + 4*a^2*n^4*t^2*x0^2 - 4*b^3*m^4*t*y0 + a^2*b^2*m^2*n^2 + b^2*m^2*n^2*x0^2 + a^2*b^2*m^2*n^2*t^8 + b^2*m^2*n^2*t^8*x0^2 - 4*a^2*b^2*m^2*n^2*t^6 + 4*a^2*m^2*n^2*t^6*y0^2 + 22*a^2*b^2*m^2*n^2*t^4 + 8*a^2*m^2*n^2*t^4*y0^2 - 2*b^2*m^2*n^2*t^4*x0^2 - 4*a^2*b^2*m^2*n^2*t^2 + 4*a^2*m^2*n^2*t^2*y0^2 - 2*a*b^2*m^2*n^2*x0 + b^2*m^4*y0^2 + 4*b^4*m^4*t^6 + 4*b^4*m^4*t^2 - b^2*m^4*n^2 + 4*a^4*n^4*t^2 - 8*b^4*m^4*t^4 - 8*a^4*n^4*t^4 + 4*a^4*n^4*t^6 + (a^2*b^2*m^2*n^2*t^8 + 2*a*b^2*m^2*n^2*t^8*x0 - b^2*m^4*n^2*t^8 + b^2*m^4*t^8*y0^2 + b^2*m^2*n^2*t^8*x0^2 - 4*b^3*m^4*t^7*y0 + 4*a^4*n^4*t^6 + 8*a^3*n^4*t^6*x0 - 4*a^2*b^2*m^2*n^2*t^6 - 4*a^2*m^2*n^4*t^6 + 4*a^2*m^2*n^2*t^6*y0^2 + 4*a^2*n^4*t^6*x0^2 - 4*a*b^2*m^2*n^2*t^6*x0 + 4*b^4*m^4*t^6 - 16*a^2*b*m^2*n^2*t^5*y0 + 4*b^3*m^4*t^5*y0 - 8*a^4*n^4*t^4 + 22*a^2*b^2*m^2*n^2*t^4 - 8*a^2*m^2*n^4*t^4 + 8*a^2*m^2*n^2*t^4*y0^2 + 8*a^2*n^4*t^4*x0^2 - 8*b^4*m^4*t^4 + 2*b^2*m^4*n^2*t^4 - 2*b^2*m^4*t^4*y0^2 - 2*b^2*m^2*n^2*t^4*x0^2 - 16*a^2*b*m^2*n^2*t^3*y0 + 4*b^3*m^4*t^3*y0 + 4*a^4*n^4*t^2 - 8*a^3*n^4*t^2*x0 - 4*a^2*b^2*m^2*n^2*t^2 - 4*a^2*m^2*n^4*t^2 + 4*a^2*m^2*n^2*t^2*y0^2 + 4*a^2*n^4*t^2*x0^2 + 4*a*b^2*m^2*n^2*t^2*x0 + 4*b^4*m^4*t^2 - 4*b^3*m^4*t*y0 + a^2*b^2*m^2*n^2 - 2*a*b^2*m^2*n^2*x0 - b^2*m^4*n^2 + b^2*m^4*y0^2 + b^2*m^2*n^2*x0^2)*k^2 + (-2*a^2*b^2*m^2*n^2*t^8 - 4*a*b^2*m^2*n^2*t^8*x0 + 2*b^2*m^4*n^2*t^8 + 2*b^2*m^4*t^8*y0^2 - 2*b^2*m^2*n^2*t^8*x0^2 + 16*a^2*b*m^2*n^2*t^7*y0 + 16*a*b*m^2*n^2*t^7*x0*y0 - 8*b^3*m^4*t^7*y0 + 8*a^4*n^4*t^6 + 16*a^3*n^4*t^6*x0 - 24*a^2*b^2*m^2*n^2*t^6 + 8*a^2*m^2*n^4*t^6 - 8*a^2*m^2*n^2*t^6*y0^2 + 8*a^2*n^4*t^6*x0^2 - 24*a*b^2*m^2*n^2*t^6*x0 + 8*b^4*m^4*t^6 + 16*a^2*b*m^2*n^2*t^5*y0 + 16*a*b*m^2*n^2*t^5*x0*y0 + 8*b^3*m^4*t^5*y0 - 16*a^4*n^4*t^4 + 20*a^2*b^2*m^2*n^2*t^4 + 16*a^2*m^2*n^4*t^4 - 16*a^2*m^2*n^2*t^4*y0^2 + 16*a^2*n^4*t^4*x0^2 - 16*b^4*m^4*t^4 - 4*b^2*m^4*n^2*t^4 - 4*b^2*m^4*t^4*y0^2 + 4*b^2*m^2*n^2*t^4*x0^2 + 16*a^2*b*m^2*n^2*t^3*y0 - 16*a*b*m^2*n^2*t^3*x0*y0 + 8*b^3*m^4*t^3*y0 + 8*a^4*n^4*t^2 - 16*a^3*n^4*t^2*x0 - 24*a^2*b^2*m^2*n^2*t^2 + 8*a^2*m^2*n^4*t^2 - 8*a^2*m^2*n^2*t^2*y0^2 + 8*a^2*n^4*t^2*x0^2 + 24*a*b^2*m^2*n^2*t^2*x0 + 8*b^4*m^4*t^2 + 16*a^2*b*m^2*n^2*t*y0 - 16*a*b*m^2*n^2*t*x0*y0 - 8*b^3*m^4*t*y0 - 2*a^2*b^2*m^2*n^2 + 4*a*b^2*m^2*n^2*x0 + 2*b^2*m^4*n^2 + 2*b^2*m^4*y0^2 - 2*b^2*m^2*n^2*x0^2)*k=0
上式关于\(t\)求导并联立上式消元可以得到k取极值时的方程(表达式太长,略去)
例如:
对于\(a = 2, b = 1, m = 10, n = 6, x_0 = 2, y_0 = 2\)
代入得到:
-262400*k^2*t^8 - 80000*k^2*t^7 + 684800*k*t^8 - 1586624*k^2*t^6 + 761600*k*t^7 - 262400*t^8 - 380800*k^2*t^5 + 3738752*k*t^6 - 80000*t^7 - 2838400*k^2*t^4 + 1081600*k*t^5 - 1586624*t^6 - 380800*k^2*t^3 + 5958400*k*t^4 - 380800*t^5 - 1803200*k^2*t^2 + 160000*k*t^3 - 2838400*t^4 - 80000*k^2*t + 3766400*k*t^2 - 380800*t^3 - 320000*k^2 - 160000*k*t - 1803200*t^2 + 800000*k - 80000*t - 320000=0
对上式关于\(t\)求导并联立上式消元\(t\)得到:
30082656341703358469277587865600000000*k^16 - 300953784148725256036394257612800000000*k^15 + 2934162696746981709158211492249600000000*k^14 - 21079060077706214283946456252416000000000*k^13 + 90809841658981202084239235245670400000000*k^12 - 249397191252899066597233587860275200000000*k^11 + 479934478610046242187927515194982400000000*k^10 - 698229412196511735232110375469056000000000*k^9 + 791873567235670357454077893279744000000000*k^8 - 698229412196511735232110375469056000000000*k^7 + 479934478610046242187927515194982400000000*k^6 - 249397191252899066597233587860275200000000*k^5 + 90809841658981202084239235245670400000000*k^4 - 21079060077706214283946456252416000000000*k^3 + 2934162696746981709158211492249600000000*k^2 - 300953784148725256036394257612800000000*k + 30082656341703358469277587865600000000=0
解得\(k={0.4037716479, 0.4624518570, 2.162387251, 2.476647395}\)
则可以得到:\(k=2.476647395,t=4.245867034\),进一步得到\(x_1 = 5.390040146, x_2 = -4.688785674, y_1 = 7.644709558, y_2 = -2.460230110, x_3 = -1.789776703, y_3 = 0.4462900832\)
画图得到:
若\(a = r, b = r, m = R, n = R\)则化为两个圆的情形:
一般点的\(k\)满足方程:
\(R^2k^2t^4 - k^2r^2t^4 - 2k^2rt^4x_0 - k^2t^4x_0^2 - k^2t^4y_0^2 - 2R^2kt^4 + 4k^2rt^3y_0 + 2kr^2t^4 + 4krt^4x_0 + 2kt^4x_0^2 - 2kt^4y_0^2 + 2R^2k^2t^2 + R^2t^4 - 2k^2r^2t^2 - 2k^2t^2x_0^2 - 2k^2t^2y_0^2 - 8krt^3y_0 - 16kt^3x_0y_0 - r^2t^4 - 2rt^4x_0 - t^4x_0^2 - t^4y_0^2 - 4R^2kt^2 + 4k^2rty_0 + 4kr^2t^2 - 12kt^2x_0^2 + 12kt^2y_0^2 + 4rt^3y_0 + R^2k^2 + 2R^2t^2 - k^2r^2 + 2k^2rx_0 - k^2x_0^2 - k^2y_0^2 - 8krty_0 + 16ktx_0y_0 - 2r^2t^2 - 2t^2x_0^2 - 2t^2y_0^2 - 2R^2k + 2kr^2 - 4krx_0 + 2kx_0^2 - 2ky_0^2 + 4rty_0 + R^2 - r^2 + 2rx_0 - x_0^2 - y_0^2=0\)
\(k\)取极值时满足方程:
\(-k^4r^2 + 4R^2k^3 - 4k^3x_0^2 - 4k^3y_0^2 - 8R^2k^2 + 2k^2r^2 - 8k^2x_0^2 - 8k^2y_0^2 + 4R^2k - 4kx_0^2 - 4ky_0^2 - r^2=0\)
例本贴取\(r=1,R=6,x_0=1,y_0=4\)代入上式得到:\((k^2 - 6k + 1)(k^2 - 70k + 1)=0\) |
|