- 注册时间
- 2009-3-10
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 2345
- 在线时间
- 小时
|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?欢迎注册
×
证明:假设A、B是两点,P是直线外一点,P在AB直线的垂足H可以表示为:
\(h=\frac{1}{2}\left[h+\frac{p(a-b)}{\bar {a}-\bar{b}}+\frac{\bar {a}b-a\bar {b}}{\bar {a}-\bar{b}}\right]\),具体推导参考链接中的国际学术会议论文。
把△ABC的外接圆看作单位圆,且B在实轴上,易得:
\(b=1,a=\bar{c}=q^2,c=\bar{a}=\frac{1}{q^2}\),\(f=\frac{1}{4}(q^2+\frac{3}{q^2}),\bar{f}=\frac{1}{4}(3q^2+\frac{1}{q^2}),i=\bar{i}=q+\frac{1}{q}-1,m=\bar{m}=\frac{1}{2}(q+\frac{1}{q})\)
Mathematica计算得:
\(h=\frac{2q^2-q+1}{3q-1}\)
所以:\(h-q=\frac{1-q^2}{3q-1},h-b=\frac{2(q-1)^2}{3q-1}\),\(\frac{h-q}{h-b}=\frac{1+q}{2(1-q)}\)
结论是显然的,以上系列表达式简单变形后可以得到对应的结论 ,图中用红色标记。
|
|