- 注册时间
- 2007-12-27
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 40285
- 在线时间
- 小时
|
发表于 2021-3-30 08:01:52
|
显示全部楼层
以河水为参考物,视人以-w(水速)常速移动,于是狗以恒速v向着人的方向移动。
设人的初始位置为原点,所在岸线为Y轴,水流方向为正向,狗的初始位置为$(a,0)$,
设 t 时刻人-狗连线的倾角为$\theta$,狗的位置为(x,y). 显然人的位置为$(0, y-x\tan\theta)$, 狗一直向着人移动,所以$\frac{dy}{dt}=-v\sin\theta, \frac{dx}{dt}=-v\cos\theta$
于是$\frac{d(y-x\tan\theta)}{dt}=-w$,得出
于是我们有$x\frac{d\theta}{dt}=w\cos^2\theta$
\(\begin{cases}x\frac{d\theta}{dt}=w\cos^2\theta\\\frac{dx}{dt}=-v\cos\theta\end{cases}\)
第二式除以第一式得出$\frac{w}{v}\frac{dx}{x}=-\frac{d\sin\theta}{1-\sin^2\theta}$
于是得出$x=a(\frac{1-\sin(\theta)}{1+\sin(\theta)})^{\frac{v}{2w}$
题目数据是设计好的,当$x=a/3$时,$\sin\theta=\frac{w}{v}$, 凑巧可得$\sin\theta=1/2$, 所以$w=v/2=1$公里/小时
代回去得 $x/a=\frac{1-\sin\theta}{1+\sin\theta}$
将$x\frac{d\theta}{dt}=w\cos^2\theta$代入得到$\frac{d\theta}{dt}=\frac{w}{a}(1+\sin\theta)^2$
解得 $\frac{w}{a}t-1/3=\frac{3\sin\frac{\theta}2-\cos\frac{3\theta}{2}}{3(\sin\frac{\theta}2+\cos\frac{\theta}2)^3}$
结束时 $\theta=\frac{pi}2$, 代入得结束时间为$ t_e = \frac{4a}{3v}$, 而静水穿越的时间为$\frac{a}{v}$,得出$\frac{a}{v}$为15分钟,所以河宽0.5公里
dog.ggb
(25.1 KB, 下载次数: 5)
|
|