找回密码
 欢迎注册
查看: 23644|回复: 7

[讨论] 一个OEIS序列的问题

[复制链接]
发表于 2021-5-6 15:30:56 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
今天OEIS投了个稿,编辑说似乎跟某个老序列均差1。大家帮忙看看是不是有差异?

A343975
NAME       
The least sum of most number of factors which are different and their product is equal to n.

DATA       
1, 3, 4, 5, 6, 6, 8, 7, 10, 8, 12, 8, 14, 10, 9, 11, 18, 10, 20, 10

OFFSET       
1,2

EXAMPLE       
For n = 12, its divisors are [1, 2, 3, 4, 6, 12]. We can express 12 as product of most 3 factors: 1*2*6 or 1*3*4. 1+3+4=8<1+2+6, thus a(12) = 8.

For n = 18, its divisors are [1,2,3,6,9,18]. We can express 18 as product of most 3 factors: 1*2*9 or 1*3*6. 1+3+6=10<1+2+9, thus a(18) = 10.

-------------------------------------------------------------
       
Kevin Ryde: A319057 + 1 looks same for many terms, but the definition here and there are not quite the same. Will it differ eventually? (If not then you may like to extend A319057 instead of a new sequence.)

-------------------------------------------------------------
A319057                Minimum sum of a strict factorization of n into factors > 1.               

0, 2, 3, 4, 5, 5, 7, 6, 9, 7, 11, 7, 13, 9, 8, 10, 17, 9, 19, 9, 10, 13, 23, 9, 25, 15, 12, 11, 29, 10, 31, 12, 14, 19, 12, 11, 37, 21, 16, 11, 41, 12, 43, 15, 14, 25, 47, 12, 49, 15, 20, 17, 53, 14, 16, 13, 22, 31, 59, 12, 61, 33, 16, 14, 18, 16, 67, 21, 26 (list; graph; refs; listen; history; edit; text; internal format)
OFFSET       
1,2

COMMENTS       
a(n) >= A001414(n), with equality iff n is squarefree or four times a squarefree number (i.e., A000188(n) <= 2). - Charlie Neder, Sep 10 2018

LINKS       
Charlie Neder, Table of n, a(n) for n = 1..1000

EXAMPLE       
The strict factorizations of 48 are (48), (2*24), (3*16), (4*12), (6*8), (2*3*8), (2*4*6), with sums 48, 26, 19, 16, 14, 13, 12 respectively, so a(48) = 12.

MATHEMATICA       
strfacs[n_]:=If[n<=1, {{}}, Join@@Table[(Prepend[#, d]&)/@Select[strfacs[n/d], Min@@#>d&], {d, Rest[Divisors[n]]}]];

Table[Min[Total/@strfacs[n]], {n, 100}]

CROSSREFS       
Cf. A001055, A007716, A045778, A056239, A162247, A215366, A246868, A318871, A318953, A318954.

Sequence in context: A134875 A134889 A303702 * A181894 A265535 A094802

Adjacent sequences:  A319054 A319055 A319056 * A319058 A319059 A319060

KEYWORD       
nonn

AUTHOR       
Gus Wiseman, Sep 09 2018

STATUS       
approved
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2021-5-6 15:33:10 | 显示全部楼层
百度翻译

The least sum of most number of factors which are different and their product is equal to n.

各因子之积等于n的多数因子的最小和。

Minimum sum of a strict factorization of n into factors > 1.

n到因子>1的严格因子分解的最小和。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2021-5-7 07:45:53 | 显示全部楼层
两者定义的唯一区别是前一个包含了因子1,后者不包含因子1吧?
当然前者还加了额外的数目最多的要求,但是和最小同样意味着数目最多,所以这个条件可以省略

评分

参与人数 1威望 +8 金币 +8 贡献 +8 经验 +8 鲜花 +8 收起 理由
northwolves + 8 + 8 + 8 + 8 + 8 仔细想了想,确实几乎完全一样,谢谢mathe

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2021-5-7 08:02:25 | 显示全部楼层
从题目看Minimum sum of a strict factorization of n into factors简练多了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2021-5-7 08:06:56 | 显示全部楼层
northwolves 发表于 2021-5-7 08:02
从题目看Minimum sum of a strict factorization of n into factors简练多了

你应该翻译一下,表达一下你的数列是啥意思
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2021-5-7 09:09:01 | 显示全部楼层
mathematica 发表于 2021-5-7 08:06
你应该翻译一下,表达一下你的数列是啥意思

我的初步想法就是把n表示成某几个因数的积,因数个数最多的情况下其和值最小。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2021-5-7 09:10:00 | 显示全部楼层
本帖最后由 王守恩 于 2021-5-7 10:38 编辑
mathematica 发表于 2021-5-7 08:06
你应该翻译一下,表达一下你的数列是啥意思


题目看不懂,但好像是这样:每个a(n)不会比 n 大,每个 n 都会在a(n)中出现

A319057(挺好玩的:把n表示成不同因数(不能是1)的积)
{0, 2, 3, 4,
5, 5, 7, 6, 9,
7, 11, 7, 13, 9, 8, 10,
17, 9, 19, 9, 10, 13, 23, 9, 25,
15, 12, 11, 29, 10, 31, 12, 14, 19, 12, 11,
37, 21, 16, 11, 41, 12, 43, 15, 14, 25, 47, 12, 49,
15, 20, 17, 53, 14, 16, 13, 22, 31, 59, 12, 61, 33, 16, 14,
18, 16, 67, 21, 26, 14, 71, 13, 73, 39, 20, 23, 18, 18, 79, 15, 30,
43, 83, 14, 22, 45, 32, 17, 89, 14, 20, 27, 34, 49, 24, 15, 97, 21, 20, 17,
101, 22, 103, 19, 15, 55, 107, 16, 109, 18, 40, 17, 113, 24, 28, 33, 22, 61, 24, 14, 121,
63, 44, 35, 30, 16, 127, 22, 46, 20, 131, 18, 26, 69, 17, 23, 137, 28, 139, 16, 50, 73, 24, 15,
34, 75, 28, 41, 149, 18, 151, 25, 26, 20, 36, 20, 157, 81, 56, 17, 30, 18, 163, 45, 19, 85, 167, 16, 169,
24, 28, 47, 173, 34, 32, 21, 62, 91, 179, 16, 181, 22, 64, 29, 42, 36, 28, 51, 19, 26, 191, 17, 193, 99, 21, 23,
197, 20, 199, 19, 70, 103, 36, 24, 46, 105, 32, 23, 30, 17, 211, 57, 74, 109, 48, 18, 38, 111, 76, 20, 30, 42, 223, 19, 23,
115, 227, 26, 229, 30, 21, 35, 233, 22, 52, 63, 82, 26, 239, 17, 241, 33, 36, 65, 42, 46, 32, 37, 86, 32, 251, 18, 34, 129, 25, 26,
257, 48, 44, 22, 38, 133, 263, 20, 58, 28, 92, 71, 269, 19, 271, 27, 23, 139, 36, 30, 277, 141, 40, 18, 281, 52, 283, 75, 27, 26, 48, 19, 289}
应该是这样:把n表示成不同因数(因数不能是1)的积
譬如:36=2*2*3*3(相同的不行)=3*3*4(相同的不行)=2*3*6=11
譬如:81=3*3*3*3(相同的不行)=3*3*9(相同的不行)=3*27=30
譬如:120=2*3*4*5=14
譬如:144=2*3*4*6=15
譬如:240=2*4*5*6=17
譬如:720=2*3*4*5*6=20
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2021-5-10 18:59:52 | 显示全部楼层
本帖最后由 王守恩 于 2021-5-10 19:12 编辑
northwolves 发表于 2021-5-7 09:09
我的初步想法就是把n表示成某几个因数的积,因数个数最多的情况下其和值最小。

A001414:把 n 表示成某几个因数的积,其和值最小。A001414 比A319057 还是简单些。       
{0, 2, 3, 4,
5, 5, 7, 6, 6,
7, 11, 7, 13, 9, 8, 8,
17, 8, 19, 9, 10, 13, 23, 9, 10,
15, 9, 11, 29, 10, 31, 10, 14, 19, 12, 10,
37, 21, 16, 11, 41, 12, 43, 15, 11, 25, 47, 11, 14,
12, 20, 17, 53, 11, 16, 13, 22, 31, 59, 12, 61, 33, 13, 12,
18, 16, 67, 21, 26, 14, 71, 12, 73, 39, 13, 23, 18, 18, 79, 13, 12,
43, 83, 14, 22, 45, 32, 17, 89, 13, 20, 27, 34, 49, 24, 13, 97, 16, 17, 14,
101, 22, 103, 19, 15, 55, 107, 13, 109, 18, 40, 15, 113, 24, 28, 33, 19, 61, 24, 14, 22,
63, 44, 35, 15, 15, 127, 14, 46, 20, 131, 18, 26, 69, 14, 23, 137, 28, 139, 16, 50, 73, 24, 14,
34, 75, 17, 41, 149, 15, 151, 25, 23, 20, 36, 20, 157, 81, 56, 15, 30, 14, 163, 45, 19, 85, 167, 16, 26,
24, 25, 47, 173, 34, 17, 19, 62, 91, 179, 15, 181, 22, 64, 29, 42, 36, 28, 51, 16, 26, 191, 15, 193, 99, 21, 18,
197, 19, 199, 16, 70, 103, 36, 24, 46, 105, 29, 21, 30, 17, 211, 57, 74, 109, 48, 15, 38, 111, 76, 20, 30, 42, 223, 17, 16,
115, 227, 26, 229, 30, 21, 35, 233, 21, 52, 63, 82, 26, 239, 16, 241, 24, 15, 65, 19, 46, 32, 37, 86, 17, 251, 17, 34, 129, 25, 16,
257, 48, 44, 22, 35, 133, 263, 20, 58, 28, 92, 71, 269, 16, 271, 25, 23, 139, 21, 30, 277, 141, 37, 18, 281, 52, 283, 75, 27, 26, 48, 16, 34}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-22 17:37 , Processed in 0.026431 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表