找回密码
 欢迎注册
查看: 21550|回复: 2

[原创] 三角形内角和定理的另类证明

[复制链接]
发表于 2021-7-13 21:42:40 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
\(\frac{\overrightarrow{AC}}{\overrightarrow{AB}}\frac{\overrightarrow{BA}}{\overrightarrow{BC}}\frac{\overrightarrow{BC}}{\overrightarrow{AC}}=\frac{AC}{AB}e^{iA}\frac{BA}{BC}e^{iB}\frac{BC}{AC}e^{iC}=-1\)
所以A+B+C=π

向量商

向量商
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2021-7-14 09:26:23 | 显示全部楼层
可以用它证明正弦定理和余弦定理,你试试。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2021-7-15 22:05:57 | 显示全部楼层
本帖最后由 dlsh 于 2021-7-15 22:06 编辑

证明:\(假设B在原点 ,C在实轴上,\frac{\overrightarrow{AC}}{\overrightarrow{AB}}=\lambda v,其中\frac{AC}{AB}=\lambda,v=e^i{A},根据向量定比分点公式得a=\frac{1}{1-\lambda v},\bar{a}=\frac{v}{v-\lambda}\)
余弦定理
\(AB^2+AC^2-BC^2=a\bar {a}+(a-c)(\bar {a}-\bar {c})-(b-c)(\bar {b}-\bar {c})=\left(\frac{1}{1-\lambda v}\frac{v}{v-\lambda}\right)+\frac{\lambda v}{1-\lambda v}\frac{\lambda}{v-\lambda}-1=\frac{\lambda(1+v^2)}{(1-\lambda v)\left(v-\lambda\right)}\)
\(2ABACcosA=|\frac{1}{1-\lambda v}\frac{\lambda v}{v-\lambda}(v+\frac{1}{v})|=\frac{\lambda(1+v^2)}{(1-\lambda v)\left(v-\lambda\right)}\)
正弦定理
\(\frac{BC}{sinA}=|\frac{1}{\frac{v-\bar v}{2}}i|=\frac{2}{1-v^2},因为∠O=2∠A,由向量定比分点公式得o=\frac{1}{1-v^2},还可以证明OA=OB=OC\)
QQ浏览器截图20210715220449.png
老师如何证明






补充内容 (2021-7-18 22:38):
\(\frac{BC}{sinA的计算结果应该加绝对值符号\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 16:05 , Processed in 0.027788 second(s), 19 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表