- 注册时间
- 2015-10-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 3356
- 在线时间
- 小时
|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?欢迎注册
×
给定二元函数\(f\left( x{,}y\right)\),\(x\ \in\left[ 0{,}1\right]\),\(y\ \in\left[ 0{,}1\right]\),已知:
(1)对于任意常数\(c\),\(f\left( x{,}c\right)\)是关于\(x\)的连续函数。
(2)对于任意常数\(t\),\(f\left( t{,}y\right)\)是关于\(y\)的严格单调递增连续函数。
(3)\(f\left( x{,}0\right)=0\),\(f\left( 0{,}y\right)=y\),\(f\left( 1{,}y\right)=0\)。
(4)当\(x\ne1\),\(y\ne0\)时,\(f\left( x{,}y\right)>0\)。
问:
对于每一个固定的\(y_0\),\(f\left( x{,}y_0\right)\)在\(\left[ 0{,}1\right]\)上一定有一个最大值\(g\left( y_0\right)\)。
当\(y\)趋于0时,\(g\left( y\right)\)是否趋于0? |
|