- 注册时间
- 2007-12-27
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 40155
- 在线时间
- 小时
|
发表于 2021-10-29 07:39:08
|
显示全部楼层
根据19#的信息我们有\(\lambda_{m,h}=\frac{(h+1)}2 (\frac h{h-1})^h \sum_{s=h}^{m}(\frac{h^2-1}{h^2})^s \lambda_{s-1,h-1}\)
而且\(\lambda_{m,1}=2\)
于是\(\lambda_{m,2}=12\sum_{s=2}^{m}(\frac34)^m=27(1-(\frac34)^{m-1})=27\times 1^m -36\times (\frac34)^m\)
设\(\lambda_{m,h}=\sum_{t=1}^h a_{h,t} d_{h,t}^m\), 于是\(a_{1,1}=2,d_{1,1}=1\)
得出\(\lambda_{m,h}=\frac{(h+1)}2 (\frac h{h-1})^h \sum_{s=h}^{m}(\frac{h^2-1}{h^2})^s\sum_{t=1}^{h-1} a_{h-1,t} d_{h-1,t}^{s-1}\)
即
\(\lambda_{m,h}=\frac{(h+1)}2 (\frac h{h-1})^h\sum_{t=1}^{h-1}\frac{a_{h-1,t}}{d_{h-1,t}} \sum_{s=h}^{m}(\frac{(h^2-1)d_{h-1,t}}{h^2})^s = \frac{(h+1)}2 (\frac h{h-1})^h\sum_{t=1}^{h-1}\frac{a_{h-1,t}}{d_{h-1,t}}(\frac{(h^2-1)d_{h-1,t}}{h^2})^h\frac{1-(\frac{(h^2-1)d_{h-1,t}}{h^2})^{m-h+1}}{1-\frac{(h^2-1)d_{h-1,t}}{h^2}}\)
于是\(d_{h,1}=1,c_h=a_{h,1}= \frac{h+1}2 (\frac h{h-1})^h\sum_{t=1}^{h-1}\frac{a_{h-1,t}}{d_{h-1,t}}(\frac{(h^2-1)d_{h-1,t}}{h^2})^h\frac{1}{1-\frac{(h^2-1)d_{h-1,t}}{h^2}}\)
\(d_{h,t+1}=\frac{(h^2-1)d_{h-1,t}}{h^2}, a_{h,t+1}= -\frac{h+1}2 (\frac h{h-1})^h\frac{a_{h-1,t}}{d_{h-1,t}}\frac{(h^2-1)d_{h-1,t}}{h^2-(h^2-1)d_{h-1,t}}\)
- genv(n)=
- {
- local(a1,d1,a2,d2,r);
- a1=vector(1);
- d1=vector(1);
- r=vector(n);
- a1[1]=2;d1[1]=1;
- r[1]=a1[1];
- for(h=2,n,
- a2=vector(h); d2=vector(h);
- d2[1]=1;
- for(t=1,h-1,
- a2[1]+=(h+1)/2 *(h/(h-1))^h *a1[t]/d1[t]*((h^2-1)*d1[t]/h^2)^h/(1-(h^2-1)*d1[t]/h^2)
- );
- for(t=1,h-1,
- d2[t+1]=(h^2-1)*d1[t]/h^2;
- a2[t+1]=-(h+1)/2*(h/(h-1))^h*a1[t]/d1[t]*(h^2-1)*d1[t]/(h^2-(h^2-1)*d1[t])
- );
- r[h]=a2[1];
- a1=a2;d1=d2;
- );
- r
- }
复制代码
? genv(50)
%6 = [2, 27, 864, 50000, 4556250, 600362847, 107943428096, 25389989167104, 7566806425781250, 2786246783310546875, 1242122809681350254592, 659293182044133484843008, 410833770964932493116077594, 296989739915909608245849609375, 246512345193381888000000000000000, 232847433448573610975735274234970112, 248328650821647517484559422531106576834, 296950176680749350845339408306841923022459, 395683931132062717824795800000000000000000000, 584258701838598252138112442100000000000000000000, 951205293656954973565197384824405630472667563024282, 1699727503671546874502191962835314908599019338945363007, 3319862748238402997309922435150179539668438018929222221824, 7060738412025000000000000000000000000000000000000000000000000, 16295112848977420700151628808960424521501408889889717102050781250, 40676988462440127925550877309024599969847783469908548991508712683227, 109505675100448610564107985355773618118040166650289315714453953509851136, 317049401764517906315174510179323676712419060190552965811140836388518232064, 984713079292543354810205489016418279126309895985651495644822716712951660156250, 3273032219796723958589391783575965056497407422385033183879888616502285003662109375, 11616677949176310039418695093654600919384069620970067940485727621476755133998743683072, 43933870034320572131973751428776793562611867780429555334012149806123706833311785893756928, 176706831013955285569266015037144353964266957683886803916545002608120937973553916616944039554, 754475044107975487652455546120708769445214316933902410586401610819088082644157111644744873046875, 3413671541780902246808182005226601219181832081254182129763290185200000000000000000000000000000000000, 16340824819469675898253424336811014660000376571580144717535385856909480802408346042548517680436784136192, 82628643361479764610171315668890351820982612849068883551939594544250439989175753411003951212252918343227994, 440713658463647017480030673335380039884034370651177603023096065667936888692454520955841072221718182965428341919, 2475993477314013042596428094121670552434478770758860554008839016633000263680000000000000000000000000000000000000000, 14633154300276392504987760171337717002709603610930271779820413700035735359324160000000000000000000000000000000000000000, 90861206647310593975046369201992922060880998766766427349023307181135999458357536285947969183057159342168096938667777624962, 592043978978244726681190459772586138806847875017289297960373370392575491958216540857606719433339597596418942038618582303512187, 4043631227304256025969031353880922196243045305927127386300587312578583746830627973473415400621545939655602521023557482309467766784, 28917522093812328389876284981792652558488672415832439208508930480881069676324668394550204500000000000000000000000000000000000000000000, 216308493361459864091953421940961996055094967894771363505525871589824305041389738181723859671586960670172231857577571645379066467285156250, 1690751493744952779151353887815188763743383807222507058600561921778489226136665049815282124380475599423938505219166283927700996895161162983007, 13796499857682989832285544395268071523230378565248982883955571545130742573731937761887468250727702347898513337439141238579330605285406342199115776, 117421472850725564983177252355135375075360983615267359810665655690633208812404871431461425801633770233897394203195098093637996000045631046808737153024, 1041449823387218486698822455160228066538384264822898747925582793500876214622038259830356448450757379174789232475009659317777277465211227536201477050781250, 9617881337926556018914554110624278629741206581064131328521647229122776923892401983831453645059115173950856161018472915980037640792943420819938182830810546875]
验算得到
\(c_h = (\frac h2)^h(h+1)^{h+1}\)
也就是n次加入尝试,余下h个人的概率在n比较大时趋向\((\frac h{2n})^h(h+1)^{h+1}(\frac h{h+1})^n\) |
|