找回密码
 欢迎注册
查看: 4091|回复: 4

[求助] 椭圆曲线素数判定的原理是什么?

[复制链接]
发表于 2021-11-28 20:18:17 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
椭圆曲线素数判定的原理是什么?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2021-12-2 16:05:58 | 显示全部楼层
我正在写一个md文档,准备把所有实用素性测试算法都写一遍
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2021-12-2 17:14:41 | 显示全部楼层
无心人 发表于 2021-12-2 16:05
我正在写一个md文档,准备把所有实用素性测试算法都写一遍

BPSW算法+随机的miller rabin足够了,别的算法基本都是浪费,素数判定除非有更快或者更确定的算法,否则没多大价值

点评

BPSW其实是Lucas测试加Miller-Rabin测试的,但是两者都存在伪素数,而且比例极高,没发现通过两个测试的伪素数,并不代表不存在。  发表于 2021-12-6 08:22
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2023-8-16 13:19:28 | 显示全部楼层
本帖最后由 nyy 于 2023-8-16 13:21 编辑

https://members.loria.fr/PZimmermann/papers/ecm-entry.pdf

THE ELLIPTIC CURVE METHOD
PAUL ZIMMERMANN
The Elliptic Curve Method (ECM for short) was invented in 1985 by H. W. Lenstra,
Jr. [5]. It is suited to find small — say 9 to 30 digits — prime factors of large numbers.
Among the different factorization algorithms whose complexity mainly depends on the size
of the factor searched for (trial division, Pollard rho, Pollard p − 1, Williams p + 1), it is
asymptotically the best method known. ECM can be viewed as a generalization of Pollard’s
p − 1 method, just like ECPP generalizes the n − 1 primality test. ECM relies on Hasse’s
theorem: if p is prime, then an elliptic curve over Z/pZ has group order p + 1 − t with
|t| ≤ 2
√p, where t depends on the curve. If p + 1 − t is a smooth number, then ECM will
— most probably — succeed and reveal the unknown factor p.
Since 1985, many improvements have been proposed to ECM. Lenstra’s original algorithm
had no second phase. Brent proposes in [2] a “birthday paradox” second phase, and further
more technical refinements. In [7], Montgomery presents different variants of phase two of
ECM and Pollard p − 1, and introduces a parameterization with homogeneous coordinates,
which avoids inversions modulo n, with only 6 and 5 modular multiplications per addition
and duplication on E, respectively. It is also possible to choose elliptic curves with a group
order divisible by 12 or 16 [7, 8, 1].
Phase one of ECM works as follow

这儿有介绍


来自链接
http://www.fermatsearch.org/links.html
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-21 15:24 , Processed in 0.026931 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表