- 注册时间
- 2009-3-10
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 2345
- 在线时间
- 小时
|
楼主 |
发表于 2021-12-14 20:15:15
|
显示全部楼层
本帖最后由 dlsh 于 2021-12-14 20:18 编辑
五圆定理证明
设G是△ABC的重心,K是陪位重心,过K作三边的平行线l1,l2,l3(图1),这种平行线称为勒穆瓦纳平行线。
三条勒穆瓦纳平行线与三角形周界的六个交点在同一个圆上,这个圆称为这个三角形的第一勒穆瓦纳圆,该圆在三角形三边上所截的弦与三边的立方成比例,故又称为三重比圆。
- Clear["Global`*"]
- \!\(\*OverscriptBox["a", "_"]\) = 1/a;
- \!\(\*OverscriptBox["b", "_"]\) = 1/b;
- \!\(\*OverscriptBox["c", "_"]\) = 1/c; g = (a + b + c)/3;
- \!\(\*OverscriptBox["g", "_"]\) = (
- \!\(\*OverscriptBox["a", "_"]\) +
- \!\(\*OverscriptBox["b", "_"]\) +
- \!\(\*OverscriptBox["c", "_"]\))/3;
- k[a_, b_] := (a - b)/(
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\));
- \!\(\*OverscriptBox["k", "_"]\)[a_, b_] := 1/k[a, b];(*复斜率定义*)
- k1 = (a^2 b c)/k[g, a]; k2 = (b^2 a c)/k[g, b];
- \!\(\*OverscriptBox["Jd", "_"]\)[k1_, a1_, k2_, a2_] := -((a1 - k1
- \!\(\*OverscriptBox["a1", "_"]\) - (a2 - k2
- \!\(\*OverscriptBox["a2", "_"]\)))/(
- k1 - k2));(*复斜率等于k1,过点A1与复斜率等于k2,过点A2的直线交点*)
- Jd[k1_, a1_, k2_, a2_] := -((k2 (a1 - k1
- \!\(\*OverscriptBox["a1", "_"]\)) - k1 (a2 - k2
- \!\(\*OverscriptBox["a2", "_"]\)))/(k1 - k2));
- Waixin[a_, b_, c_] := (a
- \!\(\*OverscriptBox["a", "_"]\) (b - c) + b
- \!\(\*OverscriptBox["b", "_"]\) (c - a) + c
- \!\(\*OverscriptBox["c", "_"]\) (a - b) )/(
- \!\(\*OverscriptBox["a", "_"]\) (b - c) +
- \!\(\*OverscriptBox["b", "_"]\) (c - a) +
- \!\(\*OverscriptBox["c", "_"]\) (a - b));
- \!\(\*OverscriptBox["Waixin", "_"]\)[a_, b_, c_] := -((a
- \!\(\*OverscriptBox["a", "_"]\) (
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)) + b
- \!\(\*OverscriptBox["b", "_"]\) (
- \!\(\*OverscriptBox["c", "_"]\) -
- \!\(\*OverscriptBox["a", "_"]\)) + c
- \!\(\*OverscriptBox["c", "_"]\) (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)) )/(
- \!\(\*OverscriptBox["a", "_"]\) (b - c) +
- \!\(\*OverscriptBox["b", "_"]\) (c - a) +
- \!\(\*OverscriptBox["c", "_"]\) (a - b)));
- k = Jd[k1, a, k2, b];
- \!\(\*OverscriptBox["k", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[k1, a, k2, b];
- L = Jd[-a b, a, -b c, k];
- \!\(\*OverscriptBox["L", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[-a b, a, -b c, k]; t =
- Jd[-a b, a, -a c, k];
- \!\(\*OverscriptBox["t", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[-a b, a, -a c, k];
- p = Jd[-a b, k, -b c, b];
- \!\(\*OverscriptBox["p", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[-a b, k, -b c, b]; s =
- Jd[-c b, b, -a c, k];
- \!\(\*OverscriptBox["s", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[-c b, b, -a c, k];
- o1 = Waixin[t, L, p];
- \!\(\*OverscriptBox["o1", "_"]\) =
- \!\(\*OverscriptBox["Waixin", "_"]\)[t, L, p];
- Simplify[{k,
- \!\(\*OverscriptBox["k", "_"]\)}]
- Simplify[{1, t,
- \!\(\*OverscriptBox["t", "_"]\), , L,
- \!\(\*OverscriptBox[
- RowBox[{"L", "\[IndentingNewLine]"}], "_"]\), , p,
- \!\(\*OverscriptBox["p", "_"]\), , s,
- \!\(\*OverscriptBox["s", "_"]\)}]
- Simplify[{2, o1,
- \!\(\*OverscriptBox["o1", "_"]\), , (o1 - t) (
- \!\(\*OverscriptBox["o1", "_"]\) -
- \!\(\*OverscriptBox["t", "_"]\))}]
- Factor[{2, o1,
- \!\(\*OverscriptBox["o1", "_"]\), , (o1 - t) (
- \!\(\*OverscriptBox["o1", "_"]\) -
- \!\(\*OverscriptBox["t", "_"]\))}]
- Simplify[{3, t - L, s - p, , (t - L)/(s - p)}]
复制代码
|
|