| 
注册时间2009-3-10最后登录1970-1-1威望 星金币 枚贡献 分经验 点鲜花 朵魅力 点上传 次下载 次积分2358在线时间 小时 
 | 
 
 楼主|
发表于 2021-12-14 20:15:15
|
显示全部楼层 
| 本帖最后由 dlsh 于 2021-12-14 20:18 编辑 
 五圆定理证明
 
 设G是△ABC的重心,K是陪位重心,过K作三边的平行线l1,l2,l3(图1),这种平行线称为勒穆瓦纳平行线。
 
  三条勒穆瓦纳平行线与三角形周界的六个交点在同一个圆上,这个圆称为这个三角形的第一勒穆瓦纳圆,该圆在三角形三边上所截的弦与三边的立方成比例,故又称为三重比圆。 
 复制代码
Clear["Global`*"]
\!\(\*OverscriptBox["a", "_"]\) = 1/a; 
\!\(\*OverscriptBox["b", "_"]\) = 1/b; 
\!\(\*OverscriptBox["c", "_"]\) = 1/c; g = (a + b + c)/3; 
\!\(\*OverscriptBox["g", "_"]\) = (
\!\(\*OverscriptBox["a", "_"]\) + 
\!\(\*OverscriptBox["b", "_"]\) + 
\!\(\*OverscriptBox["c", "_"]\))/3;
k[a_, b_] := (a - b)/(
\!\(\*OverscriptBox["a", "_"]\) - 
\!\(\*OverscriptBox["b", "_"]\)); 
\!\(\*OverscriptBox["k", "_"]\)[a_, b_] := 1/k[a, b];(*复斜率定义*)
k1 = (a^2 b c)/k[g, a]; k2 = (b^2 a c)/k[g, b];
\!\(\*OverscriptBox["Jd", "_"]\)[k1_, a1_, k2_, a2_] := -((a1 - k1 
\!\(\*OverscriptBox["a1", "_"]\) - (a2 - k2 
\!\(\*OverscriptBox["a2", "_"]\)))/(
  k1 - k2));(*复斜率等于k1,过点A1与复斜率等于k2,过点A2的直线交点*)
Jd[k1_, a1_, k2_, a2_] := -((k2 (a1 - k1 
\!\(\*OverscriptBox["a1", "_"]\)) - k1 (a2 - k2 
\!\(\*OverscriptBox["a2", "_"]\)))/(k1 - k2));
Waixin[a_, b_, c_] := (a 
\!\(\*OverscriptBox["a", "_"]\) (b - c) + b 
\!\(\*OverscriptBox["b", "_"]\) (c - a) + c 
\!\(\*OverscriptBox["c", "_"]\) (a - b) )/( 
\!\(\*OverscriptBox["a", "_"]\) (b - c) + 
\!\(\*OverscriptBox["b", "_"]\) (c - a) + 
\!\(\*OverscriptBox["c", "_"]\) (a - b)); 
\!\(\*OverscriptBox["Waixin", "_"]\)[a_, b_, c_] := -((a 
\!\(\*OverscriptBox["a", "_"]\) (
\!\(\*OverscriptBox["b", "_"]\) - 
\!\(\*OverscriptBox["c", "_"]\)) + b 
\!\(\*OverscriptBox["b", "_"]\) (
\!\(\*OverscriptBox["c", "_"]\) - 
\!\(\*OverscriptBox["a", "_"]\)) + c 
\!\(\*OverscriptBox["c", "_"]\) (
\!\(\*OverscriptBox["a", "_"]\) - 
\!\(\*OverscriptBox["b", "_"]\)) )/( 
\!\(\*OverscriptBox["a", "_"]\) (b - c) + 
\!\(\*OverscriptBox["b", "_"]\) (c - a) + 
\!\(\*OverscriptBox["c", "_"]\) (a - b)));
k = Jd[k1, a, k2, b]; 
\!\(\*OverscriptBox["k", "_"]\) = 
\!\(\*OverscriptBox["Jd", "_"]\)[k1, a, k2, b];
L = Jd[-a b, a, -b c, k]; 
\!\(\*OverscriptBox["L", "_"]\) = 
\!\(\*OverscriptBox["Jd", "_"]\)[-a b, a, -b c, k]; t = 
 Jd[-a b, a, -a c, k]; 
\!\(\*OverscriptBox["t", "_"]\) = 
\!\(\*OverscriptBox["Jd", "_"]\)[-a b, a, -a c, k];
p = Jd[-a b, k, -b c, b]; 
\!\(\*OverscriptBox["p", "_"]\) = 
\!\(\*OverscriptBox["Jd", "_"]\)[-a b, k, -b c, b]; s = 
 Jd[-c b, b, -a c, k]; 
\!\(\*OverscriptBox["s", "_"]\) = 
\!\(\*OverscriptBox["Jd", "_"]\)[-c b, b, -a c, k];
o1 = Waixin[t, L, p]; 
\!\(\*OverscriptBox["o1", "_"]\) = 
\!\(\*OverscriptBox["Waixin", "_"]\)[t, L, p];
Simplify[{k, 
\!\(\*OverscriptBox["k", "_"]\)}]
Simplify[{1, t, 
\!\(\*OverscriptBox["t", "_"]\), , L, 
\!\(\*OverscriptBox[
RowBox[{"L", "\[IndentingNewLine]"}], "_"]\), , p, 
\!\(\*OverscriptBox["p", "_"]\), , s, 
\!\(\*OverscriptBox["s", "_"]\)}]
Simplify[{2, o1, 
\!\(\*OverscriptBox["o1", "_"]\), , (o1 - t) (
\!\(\*OverscriptBox["o1", "_"]\) - 
\!\(\*OverscriptBox["t", "_"]\))}]
Factor[{2, o1, 
\!\(\*OverscriptBox["o1", "_"]\), , (o1 - t) (
\!\(\*OverscriptBox["o1", "_"]\) - 
\!\(\*OverscriptBox["t", "_"]\))}]
Simplify[{3, t - L, s - p, , (t - L)/(s - p)}]
   | 
 |