- 注册时间
- 2009-3-10
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 2344
- 在线时间
- 小时
|
楼主 |
发表于 2021-12-21 12:53:51
|
显示全部楼层
如果先构造P,再作R点,利用Ceva定理,出现高次方程,先用Ceva定理,求出三边比例 关系,出现Ceva点不同,十分费解。
- (*Clear["Global`*"]*)
- \!\(\*OverscriptBox["a", "_"]\) = 1/a;
- \!\(\*OverscriptBox["b", "_"]\) = 1/b;
- \!\(\*OverscriptBox["c", "_"]\) = 1/c;(*
- \!\(\*OverscriptBox["p", "_"]\)=-((-a+2 b-c-p)/(a c ))*);
- k[a_, b_] := (a - b)/(
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\));
- \!\(\*OverscriptBox["k", "_"]\)[a_, b_] := 1/k[a, b];(*复斜率定义*)
- \!\(\*OverscriptBox["Jd", "_"]\)[k1_, a1_, k2_, a2_] := -((a1 - k1
- \!\(\*OverscriptBox["a1", "_"]\) - (a2 - k2
- \!\(\*OverscriptBox["a2", "_"]\)))/(
- k1 - k2));(*复斜率等于k1,过点A1与复斜率等于k2,过点A2的直线交点*)
- Jd[k1_, a1_, k2_, a2_] := -((k2 (a1 - k1
- \!\(\*OverscriptBox["a1", "_"]\)) - k1 (a2 - k2
- \!\(\*OverscriptBox["a2", "_"]\)))/(k1 - k2));
- Chuizu[a_, b_, p_] := (
- \!\(\*OverscriptBox["a", "_"]\) b - a
- \!\(\*OverscriptBox["b", "_"]\) + p (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)) +
- \!\(\*OverscriptBox["p", "_"]\) (a - b))/(2 (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)));(*=(1/2)[p+(
- \!\(\*OverscriptBox["a", "_"]\)b-a
- \!\(\*OverscriptBox["b", "_"]\)+
- \!\(\*OverscriptBox["p", "_"]\)(a-b))/(
- \!\(\*OverscriptBox["a", "_"]\)-
- \!\(\*OverscriptBox["b", "_"]\))]P到直线AB的垂足*)
- \!\(\*OverscriptBox["Chuizu", "_"]\)[a_, b_, p_] := (a
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["a", "_"]\) b +
- \!\(\*OverscriptBox["p", "_"]\) (a - b) + p (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)))/(2 (a - b));
- FourPoint[a_, b_, c_, d_] := ((
- \!\(\*OverscriptBox["c", "_"]\) d - c
- \!\(\*OverscriptBox["d", "_"]\)) (a - b) - (
- \!\(\*OverscriptBox["a", "_"]\) b - a
- \!\(\*OverscriptBox["b", "_"]\)) (c - d))/((a - b) (
- \!\(\*OverscriptBox["c", "_"]\) -
- \!\(\*OverscriptBox["d", "_"]\)) - (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)) (c - d));(*过两点A和B、C和D的交点*)
- \!\(\*OverscriptBox["FourPoint", "_"]\)[a_, b_, c_, d_] := -(((c
- \!\(\*OverscriptBox["d", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\) d) (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)) - ( a
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["a", "_"]\) b) (
- \!\(\*OverscriptBox["c", "_"]\) -
- \!\(\*OverscriptBox["d", "_"]\)))/((a - b) (
- \!\(\*OverscriptBox["c", "_"]\) -
- \!\(\*OverscriptBox["d", "_"]\)) - (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)) (c - d)));
- f = Chuizu[a, b, p];
- \!\(\*OverscriptBox["f", "_"]\) =
- \!\(\*OverscriptBox["Chuizu", "_"]\)[a , b, p]; e = Chuizu[a , c, p];
- \!\(\*OverscriptBox["e", "_"]\) =
- \!\(\*OverscriptBox["Chuizu", "_"]\)[a , c, p]; d = Chuizu[b, c, p];
- \!\(\*OverscriptBox["d", "_"]\) =
- \!\(\*OverscriptBox["Chuizu", "_"]\)[c, b, p];
- r1 = FourPoint[f, c, b, e];
- \!\(\*OverscriptBox["r1", "_"]\) =
- \!\(\*OverscriptBox["FourPoint", "_"]\)[f, c, b, e]; r =
- FourPoint[a, d, b, e];
- \!\(\*OverscriptBox["r", "_"]\) =
- \!\(\*OverscriptBox["FourPoint", "_"]\)[a, d, b, e];
- u = Jd[-k[c, p], b, -a c, a];
- \!\(\*OverscriptBox["u", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[-k[c, p], b, -a c, a]; v =
- Jd[-k[b, p], c, -a b, a];
- \!\(\*OverscriptBox["v", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[-k[b, p], c, -a b, a];
- t = FourPoint[b, c, u, v];
- \!\(\*OverscriptBox["t", "_"]\) =
- \!\(\*OverscriptBox["FourPoint", "_"]\)[b, c, u, v];
- Simplify[{r, r1, , r1 - r}](*验证Ceva点*)
- Factor[{1, r, r1, , r1 - r}]
- Simplify[{2, u,
- \!\(\*OverscriptBox["u", "_"]\), , v, v, , t, t, , k[a, t], k[p, r], ,
- k[a, t] - k[p, r]}](*k[p,r],k[p,r]+k[a,t]*)
- Factor[{2, u,
- \!\(\*OverscriptBox["u", "_"]\), , v, v, , t, t, , k[a, t],
- k[p, r]}](*k[p,r],k[p,r]+k[a,t]*)
复制代码
表达式太长,就不上传了,感觉不对。 |
|