- 注册时间
- 2009-3-10
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 2344
- 在线时间
- 小时
|
楼主 |
发表于 2023-5-10 21:01:10
|
显示全部楼层
本帖最后由 dlsh 于 2023-5-10 21:03 编辑
- \!\(\*OverscriptBox["o", "_"]\) = o = 0;
- \!\(\*OverscriptBox["a", "_"]\) = 1/a;
- \!\(\*OverscriptBox["b", "_"]\) = 1/b;
- \!\(\*OverscriptBox["c", "_"]\) = 1/c; h = a + b + c;
- \!\(\*OverscriptBox["h", "_"]\) =
- \!\(\*OverscriptBox["a", "_"]\) +
- \!\(\*OverscriptBox["b", "_"]\) +
- \!\(\*OverscriptBox["c", "_"]\);(*外心在原点,并且是单位圆,H是垂心*)
- d = (2 b c)/(b + c);
- \!\(\*OverscriptBox["d", "_"]\) = 2/(b + c);(*D是过B和C的交点*)
- KAB[a_, b_] := (a - b)/(
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\));
- \!\(\*OverscriptBox["KAB", "_"]\)[a_, b_] := 1/KAB[a, b];(*复斜率定义*)
- k0 = KAB[o, h];(*欧拉直线复斜率*)
- e = k0/a;
- \!\(\*OverscriptBox["e", "_"]\) = 1/e;
- f = -KAB[d, e]/e;
- \!\(\*OverscriptBox["f", "_"]\) = 1/f;
- Duichengdian[a_, b_, p_] := (
- \!\(\*OverscriptBox["a", "_"]\) b - a
- \!\(\*OverscriptBox["b", "_"]\) +
- \!\(\*OverscriptBox["p", "_"]\) (a - b))/(
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\));
- \!\(\*OverscriptBox["Duichengdian", "_"]\)[a_, b_, p_] := (a
- \!\(\*OverscriptBox["b", "_"]\) -
- \!\(\*OverscriptBox["a", "_"]\) b + p (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\)))/(a - b);(*P关于AB的对称点*)
- d' = Duichengdian[b, c, d];
- \!\(\*OverscriptBox[
- RowBox[{"d", "'"}], "_"]\) =
- \!\(\*OverscriptBox["Duichengdian", "_"]\)[b, c, d];
- Print["欧拉直线的复斜率=", Simplify[k0]];
- Print["d=", Simplify[d], " \!\(\*OverscriptBox["d", "_"]\)=",
- Simplify[
- \!\(\*OverscriptBox["d", "_"]\)]];
- Print["e=", Simplify[e], " \!\(\*OverscriptBox["e", "_"]\)=",
- Simplify[
- \!\(\*OverscriptBox["e", "_"]\)]];
- Print["f=", Simplify[f], " \!\(\*OverscriptBox["f", "_"]\)=",
- Simplify[
- \!\(\*OverscriptBox["f", "_"]\)]];
- Print["d'=", Simplify[d'], " \!\(\*OverscriptBox[
- RowBox[{"d", "'"}], "_"]\)=", Simplify[
- \!\(\*OverscriptBox[
- RowBox[{"d", "'"}], "_"]\)]];
- Print["AF的复斜率=", Simplify[KAB[a, f]], " AD'的复斜率=",
- Simplify[KAB[a, d']]]
- Print["AF和AD'的复斜率相等,所以这三点共线"]
- Print["\!\(\*FractionBox[OverscriptBox[
- RowBox[{"AD", "'"}], "\[RightVector]"], OverscriptBox["AF", \
- "\[RightVector]"]]\)=", Simplify[(d' - a)/(f - a)],
- " \!\(\*OverscriptBox[
- RowBox[{" ",
- RowBox[{"(", FractionBox[OverscriptBox[
- RowBox[{"AD", "'"}], "\[RightVector]"], OverscriptBox["AF", \
- "\[RightVector]"]], ")"}]}], "_"]\)=", Simplify[(
- \!\(\*OverscriptBox[
- RowBox[{"d", "'"}], "_"]\) -
- \!\(\*OverscriptBox["a", "_"]\))/(
- \!\(\*OverscriptBox["f", "_"]\) -
- \!\(\*OverscriptBox["a", "_"]\))]]
- Print["\!\(\*FractionBox[OverscriptBox[
- RowBox[{"AD", "'"}], "\[RightVector]"], OverscriptBox["AF", \
- "\[RightVector]"]]\)=\!\(\*OverscriptBox[
- RowBox[{"(", FractionBox[OverscriptBox[
- RowBox[{"AD", "'"}], "\[RightVector]"], OverscriptBox["AF", \
- "\[RightVector]"]], ")"}], \
- "_"]\)相等,说明\!\(\*FractionBox[OverscriptBox[
- RowBox[{"AD", "'"}], "\[RightVector]"], OverscriptBox["AF", \
- "\[RightVector]"]]\)虚部等于0,所以这三点共线"](*验证虚部等于0*)
复制代码 |
-
|