找回密码
 欢迎注册
查看: 3979|回复: 4

[转载] 关于素数的一些世界纪录

[复制链接]
发表于 2022-10-27 15:02:31 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
https://members.loria.fr/PZimmermann/records/primes.html

RECORDS FOR PRIME NUMBERS
See also the excellent page of Chris Caldwell.
The largest known prime is 257885161-1 (17,425,170 digits), found by Curtis Cooper within GIMPS on January 25, 2013.
The largest known twin primes are 33218925*2^169690+/-1 (51090 digits), found by Papp and Gallot in 2002. See also Chris Caldwell's Prime Pages which may be more up-to-date.
The largest known arithmetic progression of primes contains 24 primes: 468395662504823 + k*45872132836530, with k=0..23: it was discovered on January 18 2007 by Jaroslaw Wroblewski. The previous record had 23 primes: 56211383760397 + k*44546738095860, with k=0..22; it was discovered on 24 July 2004 by Markus Frind, Paul Jobling and Paul Underwood. Green and Tao published in April 2004 a preprint with a proof that for any given k ≥ 3, there exist arithmetic progressions of primes of length k.
The longest known sequence of consecutive primes in arithmetic progression has 10 primes, and was found in March 1998 by Manfred Toplic, one of about 100 contributors with about 200 machines. See also this site and this one.
The only known Wieferich primes are 1093 and 3511. Wieferich primes are primes such that 2^(p-1) = 1 mod p^2. Richard Crandall, Karl Dilcher and Carl Pomerance looked for Wieferich primes up to 4*10^12, and found no other (Math. of Comp. 217, 1997). They kept a table of "special instances" i.e. numbers p such that 2^((p-1)/2) (mod p^2) = +/-1+A*p with |A| less or equal to 100. Here is a file containing some pairs (p,q) of primes such that p^(q-1) = 1 mod (q^2). For each p, the value qmax indicates the upper bound of the search. These are known as Fermat's quotients. Wieferich primes correspond to the case p=2. Richard McIntosh is searching up to 8 trillion, and Rich Brown from 8 through 10 trillion.
The only known Wilson primes are 5, 13 and 563. A Wilson prime is a prime number such that (p-1)! = -1 mod p^2. These are the only known Wilson primes up to 5*10^8 (Richard Crandall, Karl Dilcher and Carl Pomerance, Math. of Comp. 217, 1997). See also The Book of Prime Number Records, P. Ribenboim, Springer, 1989. See the table of special instances.
The largest known value of the function pi(x) is pi(10^21) = 21 127 269 486 018 731 928, obtained by Xavier Gourdon on October 27, 2000. The previous record was pi(10^20)=2,220,819,602,560,918,840, obtained by Marc Deleglise and Paul Zimmermann in 13 days of cpu time on a DEC-ALPHA 5/250 and checked on a R8000, using a program written together with Joel Rivat, who had already computed pi(10^18)=24739954287740860 (Math. of Comp. 65, 1996).
The largest known Cullen and Woodall primes are C[481899] (145072 digits, discovered by Masakatu Morri on September 30, 1998) and W[98726] (29725 digits) by Jeffrey Young in 1997 where C[n]=n*2^n+1 and W[n]=n*2^n-1. See "New Cullen Primes" by Wilfrid Keller, Math. of Comp. vol. 64 nb. 212, oct. 1995, pages 1733-1741. Wilfrid Keller and Paul Leyland also keep tables of the factorizations of Cullen and Woodall numbers.
The largest known Sophie Germain prime is 1213822389*2^81131-1 (24432 digits), found by Michael Angel, Dirk Augustin and Paul Jobling in August, 2002. Sophie Germain primes P are such that P and 2P+1 are prime. See the paper from Harvey Dubner in Math. of Comp. v65 n213, 1996, 393-396.
The largest known candidate repunit prime is R(49081)=(10^49081-1)/9, found by Harvey Dubner on September 9, 1999 [it is only candidate since it has not been really proved prime]. The only known repunit primes are R(2), R(19), R(23), R(317), R(1031).
The longest known Cunningham chain of the 2nd kind is of length 16, found by Tony Forbes on 5 December 1997. It begins with 3203000719597029781, and further primes are obtained by iterating 2*p-1 (a Cunningham chain can also use 2*p+1). See Tony's announcement for more details, and A057330.
Prime gaps. Thomas R. Nicely and Bertil Nyman found the first occurrence of prime gap of 1000 or greater, namely the gap of 1132 following the prime 1693182318746371. Harvey Dubner found two gaps of length more than 2000 starting with 51-digit numbers, one gap of 12540 near 10384, and one gap of at least 50206 near 3 × 101883.

点评

英文有点难啃,要是能翻译成中文就好了,造福看不懂英文的坛友们  发表于 2022-11-9 15:14
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2022-10-27 15:03:13 | 显示全部楼层
里面有很多有意思的数据,转载过来
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2022-11-9 09:40:41 | 显示全部楼层
我除了研究素数,几乎不做别的。孪中合成数6n的数量公式:6∏\((1-{4\over(P-2)^2})\)∏\({P_i-2}\over{P_i-4}\)∏\({P_j-3}\over{P_j-4}\)\((孪中的数量)^2\over{6n}\),P≥5,0≡6n|\(P_i\),±2≡6n|\(P_j\) 。
回复你的留言!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2022-12-6 22:13:11 | 显示全部楼层
你发的信息已收到。qq聊天就不必了,如果对素数感兴趣,可以浏览下边两个连接,你会进入角色的。
[原创]k生素数群的数量公式
http://www.mathchina.com/bbs/for ... 6&fromuid=37263
(出处: 数学中国)
合成方法论群论的兄弟篇
http://www.mathchina.com/bbs/for ... 1&fromuid=37263
(出处: 数学中国)
在这里发表有关歌猜类帖子是明令禁止的,不讨论,评论,或发表自己的观点(就歌猜方面而言)。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-21 21:20 , Processed in 0.024987 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表