数学研发论坛

 找回密码
 欢迎注册
查看: 118|回复: 10

[悬赏] a^2-b^2=n^3

[复制链接]
发表于 2022-11-24 08:52:13 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有帐号?欢迎注册

x
本帖最后由 王守恩 于 2022-11-24 09:03 编辑

\(a,b\)是正整数,满足\( a^2-b^2=n^2,n=1,2,3,4,5,6,7,8,9,...\)
\(a(1)=0\)
\(a(2)=0\)
\(a(3)=1: 05^2-04^2\)
\(a(4)=1: 05^2-03^2\)
\(a(5)=1: 13^2-12^2\)
\(a(6)=1: 10^2-08^2\)
\(a(7)=1: 25^2-24^2\)
\(a(8)=2: 10^2-06^2, 17^2-15^2\)
\(a(9)=2: 15^2-12^2, 41^2-40^2\)


得到这样一串数: 0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 4, 3, 1, 2, 1, 4, 4, 1, 1, 7, 2, 1,
3, 4, 1, 4, 1, 4, 4, 1, 4, 7, 1, 1, 4, 7, 1, 4, 1, 4, 7, 1, 1, 10, 2, 2, 4, 4, 1, 3, 4, 7, ......
\(\D a(n)=\sum_{i=1}^{n-1}\bigg(1-\bigg\lceil\frac{i(2n-i)}{2(n-i)}\bigg\rceil+\bigg\lfloor\frac{i(2n-i)}{2(n-i)}\bigg\rfloor\bigg)\)
参考 OEIS--A046079,这通项公式可是2020年才有的。


\(a,b\)是正整数,满足\( a^2-b^2=n^3,n=1,2,3,4,5,6,7,8,9,...\)
\(a(1)=0\)
\(a(2)=1: 03^2-01^2\)
\(a(3)=2: 06^2-03^2, 014^2-013^2\)
\(a(4)=2: 10^2-06^2, 017^2-015^2\)
\(a(5)=2: 15^2-10^2, 063^2-062^2\)
\(a(6)=4: 15^2-03^2, 021^2-015^2, 029^2-025^2, 055^3-053^2\)
\(a(7)=2: 28^2-21^2, 172^2-171^2\)
\(a(8)=4: 24^2-08^2, 036^2-028^2, 066^2-062^2, 129^3-127^2\)
\(a(9)=3: 45^2-36^2, 123^2-120^2, 365^2-364^2\)


得到这样一串数: 0, 1, 2, 2, 2, 4, 2, 4, 3, 4, 2, 10, 2, 4, 8, 5, 2, 7, 2, 10, 8, 4, 2, 16, 3, 4,
5, 10, 2, 16, 2, 7, 8, 4, 8, 17, 2, 4, 8, 16, 2, 16, 2, 10, 14, 4, 2, 22, 3, 7, 8, 10, 2, ......

OEIS--还没有这串数,好奇的网友!你来试试?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2022-11-24 10:12:17 | 显示全部楼层
这个与n的divisors 有关,应该没有直接的通项公式

评分

参与人数 1威望 +9 金币 +9 贡献 +9 经验 +9 鲜花 +9 收起 理由
王守恩 + 9 + 9 + 9 + 9 + 9 谢谢 northwolves!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2022-11-24 12:22:42 | 显示全部楼层
$a^2-b^2=m$的解的数目只同m的因子分解情况有关系。
设$m=2^a p_1^{u_1}p_2^{u_2}...p_t^{u_t}$
那么解的数目为\(\lfloor\frac{|a-1|(u_1+1)(u_2+1)...(u_t+1)}2\rfloor\)
比如$m=6^3$,那么$a=3,u_1=3$,所以解的数目为$\frac{(3-1)(3+1)}{2}=4$种

评分

参与人数 1威望 +18 金币 +18 贡献 +18 经验 +18 鲜花 +18 收起 理由
王守恩 + 18 + 18 + 18 + 18 + 18 高人!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2022-11-24 13:05:21 | 显示全部楼层
本帖最后由 王守恩 于 2022-11-24 13:24 编辑
mathe 发表于 2022-11-24 12:22
$a^2-b^2=m$的解的数目只同m的因子分解情况有关系。
设$m=2^a p_1^{u_1}p_2^{u_2}...p_t^{u_t}$
那么解的 ...


\(\D a(n)=\sum_{i=1}^{n-1}\bigg(1-\bigg\lceil\frac{i(2n-i)}{2(n-i)}\bigg\rceil+\bigg\lfloor\frac{i(2n-i)}{2(n-i)}\bigg\rfloor\bigg)\)


这是个神奇的公式(挺佩服这位高人),也可以改进吗?

或者说:\(a^2-b^2=n^2\)的通项公式也可以改进吗?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 7 天前 | 显示全部楼层
mathe 发表于 2022-11-24 12:22
$a^2-b^2=m$的解的数目只同m的因子分解情况有关系。
设$m=2^a p_1^{u_1}p_2^{u_2}...p_t^{u_t}$
那么解的 ...

谢谢 mathe 给出 $a^2-b^2=n^3$ 解的数目关系式,再次谢谢 mathe!

Table[Floor[DivisorSigma[0, GCD[((n - 1)/2)^2, ((n + 1)/2)^2] n^3]/2], {n, 1, 130}]

{0, 1, 2, 2, 2, 4, 2, 4, 3, 4, 2, 10, 2, 4, 8, 5, 2, 7, 2, 10, 8, 4, 2, 16, 3, 4, 5, 10, 2, 16, 2, 7, 8, 4, 8, 17, 2, 4, 8, 16, 2, 16, 2, 10, 14,
4, 2, 22, 3, 7, 8, 10, 2, 10, 8, 16, 8, 4, 2, 40, 2, 4, 14, 8, 8, 16, 2, 10, 8, 16, 2, 28, 2, 4, 14, 10, 8, 16, 2, 22, 6, 4, 2, 40, 8, 4, 8, 16,
2, 28, 8, 10, 8, 4, 8, 28, 2, 7, 14, 17, 2, 16, 2, 16, 32, 4, 2, 25, 2, 16, 8, 22, 2, 16, 8, 10, 14, 4, 8, 64, 3, 4, 8, 10, 5, 28, 2, 10, 8, 16}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 7 天前 | 显示全部楼层
接 $ a^2-b^2=n^3$,在相同方式中,我们取最小的那个数。

\(a(1)=02: 0003^2-001^2,\)
\(a(2)=03: 0006^2-003^2, 0014^2-0013^2,\)
\(a(3)=09: 0045^2-036^2, 0123^2-0120^2, 0365^2-0364^2,\)
\(a(4)=06: 0015^2-003^2, 0021^2-0015^2, 0029^2-0025^2, 00055^2-00053^2,\)
\(a(5)=16: 0080^2-048^2, 0136^2-0120^2, 0260^2-0252^2, 00514^2-00510^2, 01025^2-01023^2,\)
\(a(6)=81: 1215^2-972^2, 3321^2-3240^2, 9855^2-9828^2, 29529^2-29520^2, 88575^2-88572^2, 265721^2-265720^2,\)
\(a(7)=18: 0081^2-027^2, 0099^2-0063^2, 0171^2-0153^2, 00249^2-00237^2, 00489^2-00483^2, 000731^2-000727^2, 1459^2-1457^2,\)
\(a(8)=15: 0060^2-015^2, 0076^2-0049^2, 0080^2-0055^2, 00120^2-00105^2, 00192^2-00183^2, 000340^2-000335^2, 0564^2-0561^2, 1688^2-1687^2,\)


2, 3, 9, 6, 16, 81, 18, 15, 729, 12, ?, 6561, 162, 45, 59049, 24, 36, 531441, ?, 135, 4782969, 48, ?, 225, 108, ....

这些乱七八糟的数,好像是没有规律,
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 7 天前 | 显示全部楼层
     谢谢 mathe!       谢谢 northwolves!         一并给出!

(2): $a^2-b^2=n^2$ 解的数目关系式,Table[Floor[DivisorSigma[0, GCD[((n - 1)/2)^2, ((n + 1)/2)^2] n^2]/2], {n, 1,130}]
{0, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 4, 3, 1, 2, 1, 4, 4, 1, 1, 7, 2, 1, 3, 4, 1, 4, 1, 4, 4, 1, 4, 7, 1, 1, 4,7, 1, 4, 1, 4, 7, 1, 1, 10, 2, 2, 4, 4, 1, 3, 4, 7, 4, 1, 1, 13, 1, 1, 7, 5, 4, 4, 1, 4, 4, 4, 1, 12, 1, 1, 7, 4, 4, 4, 1, 10, 4, 1, 1, 13, 4, 1,

(3): $a^2-b^2=n^3$ 解的数目关系式,Table[Floor[DivisorSigma[0, GCD[((n - 1)/2)^2, ((n + 1)/2)^2] n^3]/2], {n, 1, 130}]
{0, 1, 2, 2, 2, 4, 2, 4, 3, 4, 2, 10, 2, 4, 8, 5, 2, 7, 2, 10, 8, 4, 2, 16, 3, 4, 5, 10, 2, 16, 2, 7, 8, 4, 8, 17, 2, 4, 8,16, 2, 16, 2, 10, 14, 4, 2, 22, 3, 7, 8, 10, 2, 10, 8, 16, 8, 4, 2, 40, 2, 4, 14, 8, 8, 16, 2, 10, 8, 16, 2, 28, 2, 4, 14, 10, 8, 16,

(4): $a^2-b^2=n^4$ 解的数目关系式,Table[Floor[DivisorSigma[0, GCD[((n - 1)/2)^2, ((n + 1)/2)^2] n^4]/2], {n, 1, 130}]
{0, 1, 2, 3, 2, 7, 2, 5, 4, 7, 2, 17, 2, 7, 12, 7, 2, 13, 2, 17, 12, 7, 2, 27, 4, 7, 6, 17, 2, 37, 2, 9, 12, 7, 12, 31, 2, 7, 12, 27, 2, 37, 2, 17, 22, 7, 2, 37, 4, 13, 12, 17, 2, 19, 12, 27, 12, 7, 2, 87, 2, 7, 22, 11, 12, 37, 2, 17, 12, 37, 2, 49, 2,

(5): $a^2-b^2=n^5$ 解的数目关系式,Table[Floor[DivisorSigma[0, GCD[((n - 1)/2)^2, ((n + 1)/2)^2] n^5]/2], {n, 1, 130}]
{0, 2, 3, 4, 3, 12, 3, 7, 5, 12, 3, 27, 3, 12, 18, 9, 3, 22, 3, 27, 18, 12, 3, 42, 5, 12, 8, 27, 3, 72, 3, 12, 18, 12, 18, 49, 3, 12, 18, 42, 3, 72, 3, 27, 33, 12, 3, 57, 5, 22, 18, 27, 3, 32, 18, 42, 18, 12, 3, 162, 3, 12, 33, 14, 18, 72, 3, 27, 18,

(6): $a^2-b^2=n^6$ 解的数目关系式,Table[Floor[DivisorSigma[0, GCD[((n - 1)/2)^2, ((n + 1)/2)^2] n^6]/2], {n, 1, 130}]
{0, 2, 3, 5, 3, 17, 3, 8, 6, 17, 3, 38, 3, 17, 24, 11, 3, 32, 3, 38, 24, 17, 3, 59, 6, 17, 9, 38, 3, 122, 3, 14, 24, 17, 24, 71, 3, 17, 24, 59, 3, 122, 3, 38, 45, 17, 3, 80, 6, 32, 24, 38, 3, 47, 24, 59, 24, 17, 3, 269, 3, 17, 45, 17, 24, 122, 3, 38,

(7): $a^2-b^2=n^7$ 解的数目关系式,Table[Floor[DivisorSigma[0, GCD[((n - 1)/2)^2, ((n + 1)/2)^2] n^7]/2], {n, 1, 130}]
{0, 3, 4, 6, 4, 24, 4, 10, 7, 24, 4, 52, 4, 24, 32, 13, 4, 45, 4, 52, 32, 24, 4, 80, 7, 24, 11, 52, 4, 192, 4, 17, 32, 24,  32, 97, 4, 24, 32, 80, 4, 192, 4, 52, 60, 24, 4, 108, 7, 45, 32, 52, 4, 66, 32, 80, 32, 24, 4, 416, 4, 24, 60, 20, 32, 192, 4,

(8): $a^2-b^2=n^8$ 解的数目关系式,Table[Floor[DivisorSigma[0, GCD[((n - 1)/2)^2, ((n + 1)/2)^2] n^8]/2], {n, 1, 130}]
{0, 3, 4, 7, 4, 31, 4, 11, 8, 31, 4, 67, 4, 31, 40, 15, 4, 59, 4, 67, 40, 31, 4, 103, 8, 31, 12, 67, 4, 283, 4, 19, 40, 31, 40, 127, 4, 31, 40, 103, 4, 283, 4, 67, 76, 31, 4, 139, 8, 59, 40, 67, 4, 87, 40, 103, 40, 31, 4, 607, 4, 31, 76, 23, 40, 283,

(9): $a^2-b^2=n^9$ 解的数目关系式,Table[Floor[DivisorSigma[0, GCD[((n - 1)/2)^2, ((n + 1)/2)^2] n^9]/2], {n, 1, 130}]
{0, 4, 5, 8, 5, 40, 5, 13, 9, 40, 5, 85, 5, 40, 50, 17, 5, 76, 5, 85, 50, 40, 5, 130, 9, 40, 14, 85, 5, 400, 5, 22, 50, 40, 50, 161, 5, 40, 50, 130, 5, 400, 5, 85, 95, 40, 5, 175, 9, 76, 50, 85, 5, 112, 50, 130, 50, 40, 5, 850, 5, 40, 95, 26, 50, 400,
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 7 天前 | 显示全部楼层
王守恩 发表于 2022-11-25 16:31
谢谢 mathe!       谢谢 northwolves!         一并给出!

(2): $a^2-b^2=n^2$ 解的数目关系式,Ta ...

你觉得有趣的数列可以自己提交OEIS.ORG
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 6 天前 | 显示全部楼层
northwolves 发表于 2022-11-25 20:32
你觉得有趣的数列可以自己提交OEIS.ORG

谢谢 northwolves 鼓励!手续很是麻烦(我不会,学不了)。我还是赖在这里,这里挺好的。《[讨论] 最少马步函数》那是好东西。

A100073        $a^2-b^2=n$  解的数目关系式

Table[Floor[DivisorSigma[0, n/4]/2] (Floor[n/4] - Floor[(n - 1)/4]) + Floor[DivisorSigma[0, n]/2] (Floor[(n - 1)/2] - Floor[(n - 2)/2]), {n, 1, 200}]

{0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 1, 2, 1, 0, 2, 1, 1, 0, 1, 2, 2, 0, 2, 1, 1, 0, 2, 2, 1, 0, 1, 1, 3, 0, 1, 3, 1, 0, 2, 1, 1, 0, 2, 2, 2, 0, 1, 2, 1, 0, 3, 2, 2, 0,
1, 1, 2, 0, 1, 3, 1, 0, 3, 1, 2, 0, 1, 3, 2, 0, 1, 2, 2, 0, 2, 2, 1, 0, 2, 1, 2, 0, 2, 4, 1, 0, 3, 1, 1, 0, 1, 2, 4, 0, 1, 2, 1, 0, 2, 3, 1, 0, 2, 1, 3, 0, 2, 4, 1, 0, 2, 1, 2, 0, 1, 3, 2, 0, 1, 2, 2,
0, 4, 2, 1, 0, 1, 2, 2, 0, 2, 4, 2, 0, 3, 1, 1, 0, 1, 2, 3, 0, 2, 2, 1, 0, 2, 4, 2, 0, 1, 1, 4, 0, 1, 4, 1, 0, 3, 1, 1, 0, 3, 3, 2, 0, 1, 3, 1, 0, 2, 2, 2, 0, 2, 1, 4, 0, 1, 5, 1, 0, 4, 1, 1, 0, 1, 3}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 5 天前 | 显示全部楼层
2452418.jpg
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2022-12-2 21:56 , Processed in 0.086995 second(s), 20 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表