- 注册时间
- 2022-4-12
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 48
- 在线时间
- 小时
|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?欢迎注册
×
下列多項式乘方展開公式之完整表述:
\[\left(\sum_{i=1}^ma_i\right)^{n_0}=\sum_{1\le i\le n}^{n_i\le n_{i-1}}\prod_{i=1}^mC_{n_{i-1}}^{n_i}a_i^{n_{i-1}-n_i},\\
\forall i\in[0,m],n_i\in\mathrm{N},n_m=0.\]
以下乃冗贅形式:
\[\left(\sum_{i=1}^ma_i\right)^{n_0}=\sum_{i=1}^{r+1}T_i,T_{k+1}=\prod_{i=1}^mC_{n_{i-1}}^{n_i}a_i^{n_{i-1}-n_i},\\
k=\sum_{i=1}^{m-1}C_{n_i+m-i-1}^{n_i-1},r=k|_{n_1,n_2,\cdots,n_{m-1}=n_0}=\sum_{i=1}^{m-1}C_{n_0+m-i-1}^{n_0-1}=C_{n_0+m-1}^{n_0},\\
\forall i\in[0,m-1],n_i\in\mathrm{N},n_i\ge n_{i+1}\ge n_m=0.\] |
|