找回密码
 欢迎注册
查看: 43345|回复: 11

[原创] 一道有趣的定积分

[复制链接]
发表于 2009-10-31 13:14:30 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
$int_0^{\oo}frac{f(x,2m-1)-sinx}{x^{2m+1}}\dx$其中,f(x,2m-1)表示sinx的2m-1阶泰勒展开 如m=1时, $int_0^{\oo}frac{x-sinx}{x^3}\dx$ m=2时 $int_0^{\oo}frac{x-frac{x^3}{6}-sinx}{x^5}\dx$ 借助软件我发现结果是: $frac{\pi(-1)^{m-1}}{2(2m)!}$ 期待大侠横空出世,给出证明。。。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-4-21 16:08:46 | 显示全部楼层
QQ截图20120421161039.png

评分

参与人数 1鲜花 +12 收起 理由
wayne + 12 精彩!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2012-4-21 20:55:25 | 显示全部楼层
creasson大侠 横空出世, 在注册账号的这最近2天 扫遍了emath论坛所有高难度微积分题! 扫到了近3年前的帖子! 多谢!!!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-4-21 21:55:14 | 显示全部楼层
别捧我,我只是对积分级数感兴趣,碰巧捡了几块小石头而已。昨天才发现这个论坛,原来这里别有洞天,我发现许多大师都在这儿,邱教授,西西他们才是大侠,我只是来学习的,顺带打打酱油,呵呵,
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2012-4-21 23:46:14 | 显示全部楼层
邱教授,西西 是谁,在本论坛吗,{:3_47:}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-4-22 12:02:41 | 显示全部楼层
网名分别是yinhow,tian27546

评分

参与人数 1鲜花 +2 收起 理由
wayne + 2 多谢,我其实猜出八九成了!嘿嘿

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-4-27 12:05:14 | 显示全部楼层
我只是个高中生,对拉普拉斯变换只是有概念,不懂具体方法。 不过我还是一个费曼(一个天才的科学家)迷,他有一个“积分符号内取微分”的工具,我也学习了一下,我发现可以用到这个问题上。 我将问题一般化吧。假设有函数y=f(x),求积分 $F(t)=\int_a^b \frac{f(0)+f'(0)(tx)+f''(0)\frac{(tx)^2}{2}+...+f^{(n)}(0)\frac{(tx)^n}{n!}-f(tx)}{x^{n+1}} dx$ 我们有 $\frac{d F(t)}{dt}=$ $\int_a^b \frac{f'(0)+f''(0)(tx)+...+f^{(n)}(0)\frac{(tx)^{n-1}}{(n-1)!}-f'(tx)}{x^n} dx$ 连续n次微分得到 $\frac{d^n F(t)}{dt^n}=$ $\int_a^b \frac{f^{(n)}(0)-f^{(n)}(tx)}{x} dx$ 对于某些情况,可以n+1次微分得到 $\frac{d^{n+1} F(t)}{dt^{n+1}}=$ $\int_a^b -f^{(n+1)}(tx) dx=-f^{(n)} (tx)|_a^b$ 然后对变量t积分n次或n+1次即可,这个过程会得出多个积分常数。我们知道当t=0时原积分值为0,可以确定每一个积分常数都为0。 对于wayne的题目,f(x)=sin(x),n=2m,$f^{(2m)}(x)=(-1)^m sin x$ $\frac{d^{2m} F(t)}{dt^{2m}}=$ $\int_0^{\infty} \frac{-(-1)^m sin (tx)}{x} dx$ (这里不能够再微分了,在微分会得到$-(-1)^m sin (tx)|_0^{\infty}$,这没有意义) 根据$\int_0^{\infty} \frac{sinx}{x}dx=\frac{\pi}{2}$ 我们有 $\frac{d^{2m} F(t)}{dt^{2m}}=-(-1)^m\frac{\pi}{2}=(-1)^{m-1} \frac{\pi}{2}$ 2m次积分后:$F(t)=\frac{(-1)^{m-1} \pi *t^{2m}}{2(2m)!}$ 取m=1即可
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2012-4-27 15:10:15 | 显示全部楼层
7# 282842712474 ,赞叹之,后生可畏呀! “积分符号内取微分” 是说变限积分的吧。 当积分限是常数的话,是可以直接这么来的。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-4-27 15:44:11 | 显示全部楼层
什么叫变限积分?还没有学习高数,很多名词不懂^_^是不是指积分区间无穷的情况?积分符号内取微分可以用于积分区间有限的情况的…事实上,在《别闹了,费曼先生》中他本人对该方法评价很高,但是我学得不精,无法让各位体验更多了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2012-4-27 17:56:27 | 显示全部楼层
刚才搜索了一下,原来变限积分指的是积分区间也是用含有变量的代数式表示的。 “积分符号内取微分”的确可以用于变限积分,但是用于某些常限积分也很有效,比如 $\int_0^{\infty} \frac{sin x}{x}dx$就可以用它来积分出来。 当然最典型的例子是$\int_a^b \frac{x^t}{ln x}dx$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 19:44 , Processed in 0.034577 second(s), 20 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表