给 `a` 的二进数加缀1,等价于生成 `2a+1`, 迭代下去就生成了一个序列{`a_n`}: `a_1=a, a_{n+1}=2a_n+1`
所以对于自然数中的奇数序列,可以划分成无数个上述那样的序列,`a_1≡1\pmod4`:
{1, 3, 7, 15, 31, 63, 127, 255, 511, ...}, 对应的{`b_n`}={0, 0, 0, 0, 0, 0, 0, 0, ...}
{5, 11, 23, 47, 95, 191, 383, 767, 1535, ...}, 对应的{`b_n`}={-1, -2, 1, 1, 1, 1, ...}
{9, 19, 39, 79, 159, 319, 639, 1279, 2559, ...}, 对应的{`b_n`}={-1, -2, -3, 0, 0, 0, 0, ...}
{13, 27, 55, 111, 223, 447, 895, 1791, 3583, ...}, 对应的{`b_n`}={-1, -2, -2, 2, 2, 2, 2, ...}
{17, 35, 71, 143, 287, 575, 1151, 2303, 4607, ...}, 对应的{`b_n`}={-1, -2, -3, -4, 0, 0, 0, 0, ...}
{21, 43, 87, 175, 351, 703, 1407, 2815, 5631, ...}, 对应的{`b_n`}={-3, -3, -2, -3, 0, 0, 0, 0, ...}
{25, 51, 103, 207, 415, 831, 1663, 3327, 6655, ...}, 对应的{`b_n`}={-2, -1, -2, -2, 1, 1, 1, 1, ...}
{29, 59, 119, 239, 479, 959, 1919, 3839, 7679, ...}, 对应的{`b_n`}={-1, -2, -2, -2, 3, 3, 3, 3, ...}
{33, 67, 135, 271, 543, 1087, 2175, 4351, 8703, ...}, 对应的{`b_n`}={-1, -2, -3, -4, -5, 0, 0, 0, 0, ...}
{37, 75, 151, 303, 607, 1215, 2431, 4863, 9727, ...}, 对应的{`b_n`}={-3, -5, -1, -2, -3, 0, 0, 0, 0, ...}
{41, 83, 167, 335, 671, 1343, 2687, 5375, 10751, ...}, 对应的{`b_n`}={-2, -4, -4, -3, -4, -1, -1, -1, -1, ...}
{45, 91, 183, 367, 735, 1471, 2943, 5887, 11775, ...}, 对应的{`b_n`}={-4, 0, 0, 1, 0, 4, 4, 4, 4, 4, 4, 4, ...}
..........
结果大多数收敛到一个非负常数,也就是说`c(n)≥c(n^2)`, 这是不是有点违反常识? |