- 注册时间
- 2020-8-25
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 804
- 在线时间
- 小时
|
楼主 |
发表于 2024-4-4 10:06:56
|
显示全部楼层
本帖最后由 yigo 于 2024-4-4 13:14 编辑
上面的计算过程比较乱,整理了下思路,发现分子分母通过一直乘\(n+m\),可以简化计算,下面通过这种方式计算\( \displaystyle \sum _{n=1}^{\infty } \frac{H_n}{n^p}\)。
记:\( \displaystyle H_n^{(p)}=\sum _{i=1}^{n}\frac{1}{i^p}=\sum _{i=1}^{\infty } \left(\frac{1}{i^p}-\frac{1}{(i+n)^p}\right)=\zeta(p)-\sum _{i=1}^{\infty } \frac{1}{(i+n)^p}\),\( \displaystyle H_n^{(1)}\)简写为\( \displaystyle H_n\)。
先证明一个恒等式:\( \displaystyle \sum _{n=1}^{\infty } \frac{H_n^{(q)}}{n^p}+\sum _{n=1}^{\infty } \frac{H_n^{(p)}}{n^q}=\zeta(p+q)+\zeta(p)\zeta(q)\),当\(p,q\ge2\)时。
\( \begin{equation} \begin{split}
\sum _{n=1}^{\infty } \frac{H_n^{(q)}}{n^p}&= \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{1}{n^p}\left( \frac{1}{m^q}- \frac{1}{(n+m)^q}\right) \\
&=\zeta(p)\zeta(q)-\sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{1}{n^p(n+m)^q}\\
令k=n+m\\
&=\zeta(p)\zeta(q)-\sum _{k=2}^{\infty } \sum _{i=1}^{k-1 } \frac{1}{i^pk^q}\\
&=\zeta(p)\zeta(q)-\sum _{k=2}^{\infty } \frac{H_k^{(p)}-k^p}{k^q}\\
&=\zeta(p)\zeta(q)+\zeta(p+q)-\sum _{n=1}^{\infty } \frac{H_n^{(p)}}{n^q},证毕\\
\end{split} \end{equation} \)
\( \begin{equation} \begin{split}
\sum _{n=1}^{\infty } \frac{H_n}{n^p}&= \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{1}{n^p}\left( \frac{1}{m}- \frac{1}{n+m}\right) \\
&= \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{1}{n^{p-1}m(n+m)} \\
&= \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{n+m}{n^{p-1}m(n+m)^2} \\
&= \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{1}{n^{p-1}(n+m)^2}+ \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{1}{n^{p-2}m(n+m)^2}\\
&= \sum _{n=1}^{\infty } \frac{1}{n^{p-1}}\left(\zeta(2)-H_n^{(2)}\right)+ \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{n+m}{n^{p-2}m(n+m)^3}\\
&=\left(\zeta(2)\zeta(p-1)-\sum _{n=1}^{\infty } \frac{H_n^{(2)}}{n^{p-1}}\right)+\left(\zeta(3)\zeta(p-2)-\sum _{n=1}^{\infty } \frac{H_n^{(3)}}{n^{p-2}}\right)+ \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{1}{n^{p-3}m(n+m)^3}\\
&=\sum _{k=1}^{p-2}\left(\zeta(k+1)\zeta(p-k)-\sum _{n=1}^{\infty } \frac{H_n^{(k+1)}}{n^{p-k}}\right)+ \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{1}{nm(n+m)^{p-1}}\\
&=\frac{1}{2}\sum _{k=1}^{p-2}\left(2\zeta(k+1)\zeta(p-k)-\sum _{n=1}^{\infty } \frac{H_n^{(k+1)}}{n^{p-k}}-\sum _{n=1}^{\infty } \frac{H_n^{(p-k)}}{n^{k+1}}\right)+ \sum _{k=2}^{\infty } \sum _{i=1}^{k-1 } \frac{1}{i(k-i)k^{p-1}}\\
&=\frac{1}{2}\sum _{k=1}^{p-2}\left(2\zeta(k+1)\zeta(p-k)-\zeta(k+1)\zeta(p-k)-\zeta(p+1)\right)+ 2\sum _{n=1}^{\infty } \frac{H_n-\frac{1}{n}}{n^{p}}\\
&=\frac{1}{2}\left(\sum _{k=1}^{p-2}\zeta(k+1)\zeta(p-k)\right)-\frac{p-2}{2}\zeta(p+1)+ 2\sum _{n=1}^{\infty } \frac{H_n}{n^{p}}-2\zeta(p+1)\\
即:\\
\sum _{n=1}^{\infty } \frac{H_n}{n^p}&=\frac{p+2}{2}\zeta(p+1)-\frac{1}{2}\sum _{k=1}^{p-2}\zeta(k+1)\zeta(p-k)\\
\end{split} \end{equation} \) |
|