| 
注册时间2020-8-25最后登录1970-1-1威望 星金币 枚贡献 分经验 点鲜花 朵魅力 点上传 次下载 次积分1053在线时间 小时 
 | 
 
 楼主|
发表于 2024-4-4 10:06:56
|
显示全部楼层 
| 本帖最后由 yigo 于 2024-4-4 13:14 编辑 
 上面的计算过程比较乱,整理了下思路,发现分子分母通过一直乘\(n+m\),可以简化计算,下面通过这种方式计算\( \displaystyle \sum _{n=1}^{\infty } \frac{H_n}{n^p}\)。
 记:\( \displaystyle H_n^{(p)}=\sum _{i=1}^{n}\frac{1}{i^p}=\sum _{i=1}^{\infty } \left(\frac{1}{i^p}-\frac{1}{(i+n)^p}\right)=\zeta(p)-\sum _{i=1}^{\infty } \frac{1}{(i+n)^p}\),\( \displaystyle H_n^{(1)}\)简写为\( \displaystyle H_n\)。
 
 先证明一个恒等式:\( \displaystyle \sum _{n=1}^{\infty } \frac{H_n^{(q)}}{n^p}+\sum _{n=1}^{\infty } \frac{H_n^{(p)}}{n^q}=\zeta(p+q)+\zeta(p)\zeta(q)\),当\(p,q\ge2\)时。
 
 \( \begin{equation} \begin{split}
 \sum _{n=1}^{\infty } \frac{H_n^{(q)}}{n^p}&= \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{1}{n^p}\left( \frac{1}{m^q}- \frac{1}{(n+m)^q}\right) \\
 &=\zeta(p)\zeta(q)-\sum _{n=1}^{\infty } \sum _{m=1}^{\infty }  \frac{1}{n^p(n+m)^q}\\
 令k=n+m\\
 &=\zeta(p)\zeta(q)-\sum _{k=2}^{\infty } \sum _{i=1}^{k-1 }  \frac{1}{i^pk^q}\\
 &=\zeta(p)\zeta(q)-\sum _{k=2}^{\infty }  \frac{H_k^{(p)}-k^p}{k^q}\\
 &=\zeta(p)\zeta(q)+\zeta(p+q)-\sum _{n=1}^{\infty }  \frac{H_n^{(p)}}{n^q},证毕\\
 \end{split} \end{equation} \)
 
 \( \begin{equation} \begin{split}
 \sum _{n=1}^{\infty } \frac{H_n}{n^p}&= \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{1}{n^p}\left( \frac{1}{m}- \frac{1}{n+m}\right) \\
 &= \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{1}{n^{p-1}m(n+m)} \\
 &= \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{n+m}{n^{p-1}m(n+m)^2} \\
 &= \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{1}{n^{p-1}(n+m)^2}+  \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{1}{n^{p-2}m(n+m)^2}\\
 &= \sum _{n=1}^{\infty }  \frac{1}{n^{p-1}}\left(\zeta(2)-H_n^{(2)}\right)+  \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{n+m}{n^{p-2}m(n+m)^3}\\
 &=\left(\zeta(2)\zeta(p-1)-\sum _{n=1}^{\infty }  \frac{H_n^{(2)}}{n^{p-1}}\right)+\left(\zeta(3)\zeta(p-2)-\sum _{n=1}^{\infty }  \frac{H_n^{(3)}}{n^{p-2}}\right)+  \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{1}{n^{p-3}m(n+m)^3}\\
 &=\sum _{k=1}^{p-2}\left(\zeta(k+1)\zeta(p-k)-\sum _{n=1}^{\infty }  \frac{H_n^{(k+1)}}{n^{p-k}}\right)+  \sum _{n=1}^{\infty } \sum _{m=1}^{\infty } \frac{1}{nm(n+m)^{p-1}}\\
 &=\frac{1}{2}\sum _{k=1}^{p-2}\left(2\zeta(k+1)\zeta(p-k)-\sum _{n=1}^{\infty }  \frac{H_n^{(k+1)}}{n^{p-k}}-\sum _{n=1}^{\infty }  \frac{H_n^{(p-k)}}{n^{k+1}}\right)+  \sum _{k=2}^{\infty } \sum _{i=1}^{k-1 } \frac{1}{i(k-i)k^{p-1}}\\
 &=\frac{1}{2}\sum _{k=1}^{p-2}\left(2\zeta(k+1)\zeta(p-k)-\zeta(k+1)\zeta(p-k)-\zeta(p+1)\right)+  2\sum _{n=1}^{\infty } \frac{H_n-\frac{1}{n}}{n^{p}}\\
 &=\frac{1}{2}\left(\sum _{k=1}^{p-2}\zeta(k+1)\zeta(p-k)\right)-\frac{p-2}{2}\zeta(p+1)+  2\sum _{n=1}^{\infty } \frac{H_n}{n^{p}}-2\zeta(p+1)\\
 即:\\
 \sum _{n=1}^{\infty } \frac{H_n}{n^p}&=\frac{p+2}{2}\zeta(p+1)-\frac{1}{2}\sum _{k=1}^{p-2}\zeta(k+1)\zeta(p-k)\\
 \end{split} \end{equation} \)
 | 
 |