找回密码
 欢迎注册
查看: 3429|回复: 12

[求助] s=pi ?

[复制链接]
发表于 2024-4-6 13:44:38 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
正整数中:  使得十进制表示的非零子序列不能被 3 整除。

1, 2, 4, 5, 7, 8, 10, 11, 14, 17, 20, 22, 25, 28, 40, 41, 44, 47, 50, 52, 55, 58, 70, 71,
74, 77, 80, 82, 85, 88, 100, 101, 104, 107, 110, 140, 170, 200, 202, 205, 208, 220,
250, 280, 400, 401, 404, 407, 410, 440, 470, 500, 502, 505, 508, 520, 550, 580,....

s=1+1/2+1/4+1/5+1/7+1/8+1/10+1/11+1/14+1/17+1/20+1/22+1/25+........

求证: \(s=\pi\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-4-6 15:43:19 | 显示全部楼层
谢谢 northwolves!
  1. a=With[{k=3},Select[Range@8000,NoneTrue[DeleteCases[FromDigits/@Rest@Subsequences[IntegerDigits@#],0],Mod[#,k]==0&]&]];s=Total@(1/a);{Length@a,a,s,N[s,10]}
复制代码

{123, {1, 2, 4, 5, 7, 8, 10, 11, 14, 17, 20, 22, 25, 28, 40, 41, 44, 47, 50, 52, 55, 58, 70, 71, 74, 77, 80, 82, 85, 88, 100, 101, 104, 107, 110, 140, 170, 200, 202, 205, 208, 220, 250, 280, 400, 401, 404, 407, 410, 440,
470, 500, 502, 505, 508, 520, 550, 580, 700, 701, 704, 707, 710, 740, 770, 800, 802, 805, 808, 820, 850, 880, 1000, 1001, 1004, 1007, 1010, 1040, 1070, 1100, 1400, 1700, 2000, 2002, 2005, 2008, 2020, 2050, 2080,
2200, 2500, 2800, 4000, 4001, 4004, 4007, 4010, 4040, 4070, 4100, 4400, 4700, 5000, 5002, 5005, 5008, 5020, 5050, 5080, 5200, 5500, 5800, 7000, 7001, 7004, 7007, 7010, 7040, 7070, 7100, 7400, 7700, 8000}, 2175919945339027979739835924147121496956377212405817719/692584026612285902036909113880759445107872284941840000, 3.141741452}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-4-6 15:56:31 | 显示全部楼层
s=(1 + 1/2 + 1/4 + 1/5 + 1/7 + 1/8)
+(1/10 + 1/11 + 1/14 + 1/17 + 1/20 +1/22 +1/25 +1/28 +1/40 +1/41 +1/44 +1/47+ 1/50 +1/52 +1/55 +1/58 +1/70 +1/71 +1/74 +1/77 +1/80 +1/82 +1/85 +1/88)
+(1/100 +1/101 +1/104 +1/107 +1/110 +1/140 +1/170 +1/200 +1/202+1/205 + 1/208 +1/220 +1/250 +1/280 +1/400 +1/401 +1/404 +1/407 +1/410+1/440+1/470
+ 1/500 +1/502 +1/505 +1/508 +1/520 +1/550 +1/580 +1/700 +1/701+1/704 + 1/707 +1/710 +1/740 +1/770 +1/800 +1/802 +1/805 +1/808 +1/820+1/850+1/880)
+  ......
<(1 + 1/2 + 1/4 + 1/5 + 1/7 + 1/8)*1/1
+(1 + 1/2 + 1/4 + 1/5 + 1/7 + 1/8)*4/10
+(1 + 1/2 + 1/4 + 1/5 + 1/7 + 1/8)*7/100
+(1 + 1/2 + 1/4 + 1/5 + 1/7 + 1/8)*10/1000
+ ......
=(1 + 1/2 + 1/4 + 1/5 + 1/7 + 1/8)*(1/1 + 4/10 + 7/100 + 10/1000 + 13/10000 + 16/100000 + 19/1000000 + 22/10000000 + ......)

=621/280*40/27=23/7

即:  s<23/7=22/7=pi
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-4-6 17:17:57 | 显示全部楼层
  1. a=With[{k=2},Select[Range@8000000,NoneTrue[DeleteCases[FromDigits/@Rest@Subsequences[IntegerDigits@#],0],Mod[#,k]==0&]&]];s=Total@(1/a);{Length@a,a,s,N[s,10]}
复制代码

{82030, {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 31, 33, 35, 37, 39, 51, 53, 55, 57, 59, 71, 73, 75, 77, 79, 91, 93, 95, 97, 99, 111, 113, 115, 117, 119, 131, 133, 135, 137, 139, 151, 153, 155, 157, 159, 171,
173, 175, 177, 179, 191, 193, 195, 197, 199, 311, 313, 315, 317, 319, 331, 333, 335, 337, 339, 351, 353, 355, 357, 359, 371, 373, 375, 377, 379,  {"81880"},  7999511, 7999513, 7999515, 7999517,
7999519, 7999531, 7999533, 7999535, 7999537, 7999539, 7999551, 7999553, 7999555, 7999557, 7999559, 7999571, 7999573, 7999575, 7999577, 7999579, 7999591, 7999593, 7999595, 7999597,
7999599, 7999711, 7999713, 7999715, 7999717, 7999719, 7999731, 7999733, 7999735, 7999737, 7999739, 7999751, 7999753, 7999755, 7999757, 7999759, 7999771, 7999773, 7999775, 7999777,
7999779, 7999791, 7999793, 7999795, 7999797, 7999799, 7999911, 7999913, 7999915, 7999917, 7999919, 7999931, 7999933, 7999935, 7999937, 7999939, 7999951, 7999953, 7999955, 7999957,
7999959, 7999971, 7999973, 7999975, 7999977, 7999979, 7999991, 7999993, 7999995, 7999997, 7999999},  3.14877765722813074857426878424994826998},
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-4-6 17:38:41 | 显示全部楼层
求证:

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{20}+\frac{1}{30}+\frac{1}{40}+\frac{1}{50}+\frac{1}{60}+\frac{1}{70}+\frac{1}{80}+\frac{1}{90}+\frac{1}{100}+\frac{1}{200}+\frac{1}{300}+\frac{1}{400}+\frac{1}{500}+\frac{1}{600}+\frac{1}{700}+\frac{1}{800}+\frac{1}{900}+\frac{1}{1000}+\cdots+\)\(\frac{1}{10^{\lfloor n/9\rfloor}*(1+n-9*\lfloor n/9\rfloor)}=\frac{7129}{2268}\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2024-4-6 19:14:51 | 显示全部楼层
王守恩 发表于 2024-4-6 17:38
求证:

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac ...

$\sum_{k=1}^9\frac1k *\sum_{i=0}^{\infty}\frac{1}{10^i}=\frac{7129}{2520}*\frac{10}{9}=\frac{7129}{2268}$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-4-7 08:19:09 | 显示全部楼层
我就好奇:  改一下, 就出不来了?

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{19}+\frac{1}{29}+\frac{1}{39}+\frac{1}{49}+\frac{1}{59}+\frac{1}{69}+\frac{1}{79}+\frac{1}{89}+\frac{1}{99}+\frac{1}{199}+\frac{1}{299}+\frac{1}{399}+\frac{1}{499}+\frac{1}{599}+\frac{1}{699}+\frac{1}{799}+\frac{1}{899}+\frac{1}{999}+\frac{1}{1999}+\cdots+\)\(\frac{1}{10^{\lfloor n/9\rfloor}*(1+n-9*\lfloor n/9\rfloor)-1}=?\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-4-7 09:06:31 | 显示全部楼层
加深印象。这个还是可以有的。

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}+\frac{1}{20}-\frac{1}{30}+\frac{1}{40}-\frac{1}{50}+\frac{1}{60}-\frac{1}{70}+\frac{1}{80}-\frac{1}{90}+\frac{1}{100}-\frac{1}{200}+\frac{1}{300}-\frac{1}{400}+\frac{1}{500}-\frac{1}{600}+\frac{1}{700}-\frac{1}{800}+\frac{1}{900}-\frac{1}{1000}+\cdots-\)\(\frac{1}{10^{\lfloor n/9\rfloor}*(1+n-9*\lfloor n/9\rfloor)\cos(n\pi)}=\frac{1879}{2772}\)

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2024-4-7 09:12:03 | 显示全部楼层
王守恩 发表于 2024-4-7 08:19
我就好奇:  改一下, 就出不来了?

\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\fr ...
  1. N[Sum[Sum[1/(n*10^k - 1), {n, 2, 10}], {k, 0, Infinity}], 20]
复制代码


3.0490575908610721956
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-4-7 09:30:44 | 显示全部楼层
嗨!A037124——用你这通项还不就简单些?               

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000
  1. Table[n*10^k, {k, 0, 4}, {n, 1, 9}](好像缺点什么)
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-21 15:30 , Processed in 0.026022 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表