2465| 18
|
[提问] 求数列的通项公式 |
发表于 2024-7-9 11:06:43
|
显示全部楼层
| ||
毋因群疑而阻独见 毋任己意而废人言
毋私小惠而伤大体 毋借公论以快私情 |
||
| ||
毋因群疑而阻独见 毋任己意而废人言
毋私小惠而伤大体 毋借公论以快私情 |
||
发表于 2024-7-10 08:58:51
|
显示全部楼层
| ||
毋因群疑而阻独见 毋任己意而废人言
毋私小惠而伤大体 毋借公论以快私情 |
||
| ||
毋因群疑而阻独见 毋任己意而废人言
毋私小惠而伤大体 毋借公论以快私情 |
||
发表于 2024-7-10 18:31:08
|
显示全部楼层
| ||
毋因群疑而阻独见 毋任己意而废人言
毋私小惠而伤大体 毋借公论以快私情 |
||
发表于 2024-7-11 13:45:25
|
显示全部楼层
点评
OEIS没有这串数。通项公式还是简单:[(n^3+3n+6)/6]
| ||
毋因群疑而阻独见 毋任己意而废人言
毋私小惠而伤大体 毋借公论以快私情 |
||
| ||
毋因群疑而阻独见 毋任己意而废人言
毋私小惠而伤大体 毋借公论以快私情 |
||
| ||
毋因群疑而阻独见 毋任己意而废人言
毋私小惠而伤大体 毋借公论以快私情 |
||
发表于 2024-7-11 19:08:22
|
显示全部楼层
| ||
毋因群疑而阻独见 毋任己意而废人言
毋私小惠而伤大体 毋借公论以快私情 |
||
小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )
GMT+8, 2024-11-21 20:26 , Processed in 0.055941 second(s), 22 queries .
Powered by Discuz! X3.5
© 2001-2024 Discuz! Team.