- 注册时间
- 2008-1-29
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 5353
- 在线时间
- 小时
|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?欢迎注册
×
设有$n$元概率分布$p=(p_1,p_2,\cdots,p_n)$,定义不放回采样为:
1、先从$p$中随机采样一个$i_1$;
2、将剩下的$\{p_i|\forall i \ne i_1\}$重新归一化,然后从中随机采样一个$i_2$;
3、依此类推,每次都排除掉已经采样过的结果,然后重新归一化采样新的。
容易得到联合分布为:
$$p(i_1,i_2,\cdots,i_k) = p_{i_1}\times \frac{p_{i_2}}{1 - p_{i_1}} \times \frac{p_{i_3}}{1 - p_{i_1} - p_{i_2}}\times \frac{p_{i_k}}{1 - p_{i_1} - p_{i_2} - \cdots - p_{i_{k-1}}}$$
问题:$i_k$的边缘分布,有线性的精确计算方法吗?最好效率至多是$\mathcal{O}(nk)$。 |
|