找回密码
 欢迎注册
查看: 431|回复: 8

[求助] 4元4次,5元5次,6元6次不定方程解

[复制链接]
发表于 2024-10-31 21:33:08 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
想不起在那里,见过4元4次,5元5次,6元6次不定方程解,每一种都有组解,谁能提供?谢谢!

即:
齐次不定方程.png
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2024-10-31 22:53:19 | 显示全部楼层
$4987588419655^4+2480452675600^4+502038853976^4=5062297699257^4$
$95800^4+217519^4+414560^4=422481^4$
$2682440^4+15365639^4+18796760^4=20615673^4 $

点评

十分感谢!!!  发表于 2024-11-2 10:27
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2024-10-31 22:57:22 | 显示全部楼层
https://oeis.org/A003828

The smallest solutions to a^4 + b^4 + c^4 = k^4 are (a,b,c,k) =
95800 217519 414560 422481 (Roger Frye)
673865 1390400 2767624 2813001 (Allan MacLeod)
1705575 5507880 8332208 8707481 (D. J. Bernstein)
5870000 8282543 11289040 12197457 (D. J. Bernstein)
4479031 12552200 14173720 16003017 (D. J. Bernstein)
3642840 7028600 16281009 16430513 (D. J. Bernstein)
2682440 15365639 18796760 20615673 (Noam Elkies)
2164632 31669120 41084175 44310257 (Robert Gerbicz)
10409096 42878560 65932985 68711097 (Robert Gerbicz)
34918520 87865617 106161120 117112081 (Robert Gerbicz)
1841160 121952168 122055375 145087793 (Juergen Rathmann)
27450160 108644015 146627384 156646737 (Juergen Rathmann)
186668000 260052385 582665296 589845921 (Seiji Tomita)
219076465 275156240 630662624 638523249 (Allan MacLeod)
558424440 606710871 769321280 873822121 (Robert Gerbicz, Leonid Durman, Yuri Radaev, Alexey Zubkov)
588903336 859396455 1166705840 1259768473 (Robert Gerbicz, Leonid Durman, Yuri Radaev, Alexey Zubkov)
50237800 632671960 1670617271 1679142729 (Seiji Tomita)
686398000 1237796960 1662997663 1787882337 (Robert Gerbicz, Leonid Durman, Yuri Radaev, Alexey Zubkov)
92622401 1553556440 1593513080 1871713857 (Robert Gerbicz, Leonid Durman, Yuri Radaev, Alexey Zubkov)

点评

谢谢!太延利害了!  发表于 2024-11-2 10:32
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2024-10-31 22:59:24 | 显示全部楼层
$ 144^5 = 27^5 + 84^5 + 110^5 + 133^5$

https://oeis.org/A134341

点评

这个值漂亮!骨感!  发表于 2024-11-2 10:33
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2024-10-31 23:13:16 | 显示全部楼层

点评

我正在写一本书,写文章,需要这个数据,谢谢northwolves老师提供的数据及帮助,将记入书及文章中  发表于 2024-11-2 10:41
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-21 12:12 , Processed in 0.030707 second(s), 20 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表